СОГЛАСОВАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ И РАСЧЕТНОГО МЕТОДОВ ОЦЕНКИ ЭФФЕКТИВНОСТИ ОРГАНОВ РЕГУЛИРОВАНИЯ РЕАКТОРА ИВГ.1М

Жагипарова Л.К., Иркимбеков Р.А., Дербышев И.К., Гныря В.С.

Филиал «Институт атомной энергии» РГП НЯЦ РК, Курчатов, Казахстан

В статье представлены описание физических исследований по определению характеристик и эффективности органов регулирования и компенсации реактивности реактора ИВГ.1М, результаты нейтронно-физических расчетов эффективности органов регулирования, анализ полученных экспериментальных и расчетных данных, реализованные в рамках проекта снижения обогащения топлива на исследовательских ядерных реакторах.

Введение

Одним из актуальных вопросов при конверсии реактора является измерение запаса реактивности и эффективности органов регулирования исследовательского реактора.

Реактивность на реакторе ИВГ.1М измеряется и экспериментальными, и расчетными методами: при наборе критической массы, при проведении различных экспериментов в процессе работы. Большое значение этот параметр и его составляющие имеют при анализе возможных аварийных ситуаций и максимальной проектной аварии, при изучении динамических характеристик реакторов и диагностики их возможных технологических нарушений.

Методы измерения эффективности регулирующих органов

На исследовательских реакторах используются следующие методы измерения реактивности [1]:

- обратного умножения;
- установившегося периода разгона мощности;
- перекомпенсации;

 метод, основанный на решении обратного уравнения кинетики;

сброса стержня;

- измерение реактивности по реактиметру.

Все эти методы различаются своей точностью, необходимым реакторным временем, затраченным на их реализацию, применяемой измерительной и регистрирующей аппаратурой.

Для выполнения физических измерений на реакторе ИВГ.1М были проведены серии пусков [2]. В реактор ИВГ.1М загружены 28 штатных водоохлаждаемых технологических каналов (ВОТК-ВОУ) и 2 экспериментальных ВОТК-НОУ (низкообогащенный уран). Пуски проводились в два этапа при различных положениях стержней компенсации реактивности (СКР). Первый этап проведен при загруженной в центральный экспериментальный канал (ЦЭК) бериллиевой сборке со сквозным каналом (сборка 1). Второй этап при загруженной в ЦЭК бериллиевой сборке без экспериментальных каналов (сборка 2).

Расчетные измерения проводились с помощью программы MCNP5 [3], предназначенной для моделирования протекания ядерных процессов с использованием метода Монте-Карло и нейтронно-физической моделью реактора ИВГ.1М [4]. Модель в деталях описывает реальную конструкцию реактора ИВГ.1М, включая конструкцию ВОТК, бериллиевых блоков центральной сборки, межканальные вытеснители, боковой вытеснитель, центральный вытеснитель, конструкцию регулирующих барабанов (РБ), блоки проставок, каналы СКР и ЦЭК со сборкой (рисунок 1) [5]. Состояние реактора в модели соответствовало физическим пускам.

 ВОТК первого ряда; 2 - ВОТК второго ряда; 3 - ВОТК третьего ряда;
4 - блок; 5 - блок трехгранный; 6 - блочок трехгранный; 7 – межканальный вытеснитель; 8 - блок проставок; 9 - боковой вытеснитель; 10 – центральный вытеснитель; 11 - каналы для СКР; 12 – регулирующие барабаны;
13 – бериллиевая сборка без экспериментальных каналов (сборка 2)

Рисунок 1. Модель реактора ИВГ.1М для нейтроннофизических расчетов

Для согласования экспериментальных и расчетного методов оценки эффективности органов регулирования реактора ИВГ.1М проведена серия нейтронно-физических расчетов. Расчетный метод заключается в том, что рассчитывается разница реактивности при определенном смещении положения РБ.

Рассмотрены результаты экспериментальных методов измерения эффективности органов регулирования [1, 6] и результаты расчетного метода:

1) метод установившегося периода при малом введении положительной реактивности;

2) метод сброса стержня:

 при малом введении отрицательной реактивности;

 при большом введении отрицательной реактивности;

3) измерение реактивности по реактиметру:

 при малом введении положительной реактивности;

 при малом введении отрицательной реактивности;

 при большом введении отрицательной реактивности.

Результаты расчетов

Все эксперименты проводились при температуре теплоносителя и реактора 286 К [2]. В нейтронно-физических расчетах задана температура всех элементов, в том числе и теплоносителя, 293 К (стандартная температура используемых библиотек ядерных констант).

Реактивность определялась при различных положениях стержней СКР. Полностью введенным в активную зону реактора стержням СКР соответствует отметка «0 мм». Полностью введенным в активную зону реактора РБ соответствует угол разворота 0° [2].

Этап первый

Результаты экспериментов и расчетов по определению реактивности реактора путем введения положительной реактивности представлены в таблице 1. В таблице 2 представлены результаты эксперимента по определению значений вводимой отрицательной реактивности. Эксперименты и расчеты проводились при загруженной в ЦЭК реактора сборке 1.

В таблицах 3 и 4 представлены экспериментальные и расчетные значения эффективности системы РБ, используемые для построения регулировочной кривой. Данные значения эффективности были получены путем «сшивки» перекрывающихся измеренных участков регулировочных характеристик системы РБ (таблицы 1 и 2). Сглаженная регулировочная кривая получена путем аппроксимирования экспериментальных данных с помощью полинома третьего порядка для экспериментальных и расчетных параметров.

)		
Таолица Г. Рез	<i>vльтаты определен</i>	ия положительнои ре	еактивности
	,		

	Подожание				Реактивность, β	
N⁰	стержней СКР, мм	положение РБ (шаг)	РБ (шаг)	показания реактиметра	метод «установившегося периода»	расчетный метод
1	0	4249	4350	0,12	0,111	0,15
2	-200	4350	4450	0,11	0,100	0,13
3	-200	4340	4580	0,24	0,232	0,30
4	-270	4520	4770	0,20	0,188	0,24
5	-310	4745	4995	0,155	0,145	0,21
6	-330	4895	5195	0,14	0,135	0,17
7	-350	5100	5800	0,18	0,172	0,25

Таблица 2. Результаты определения отрицательной реактивности

Nia	Положение	Начальное	Конечное положение	Реактивность, β		
N≌	стержней СКР, мм	положение РБ (шаг)	РБ (шаг)	показания реактиметра	метод «сброса стержня»	расчетный метод
1	0	4250	3933	-0,70	-0,73	-0,55
2	0	4235	3134	-2,75	-2,88	-2,88
3	0	4251	3617	-1,30	-1,33	-1,33
4	-200	4348	4248	-0,13	-0,12	-0,13
5	-200	4350	4150	-0,26	-0,27	-0,31
6	-270	4525	4345	-0,19	-0,176	-0,21
7	-310	4750	4400	-0,32	-0,31	-0,36
8	-330	4907	4407	-0,425	-0,44	-0,48
9	-350	5100	4620	-0,312	-0,28	-0,35
10	-350	5100	0	-10,00	-10,00	-11,58

	Эффективность РБ, β				
(шаг) реактиметр		метод установившегося периода	расчетный метод		
4250	-0,884	-0,823	-1,11		
4340	-0,778	-0,728	-0,98		
4350	-0,764	-0,712	-0,97		
4450	-0,664	-0,612	-0,84		
4520	-0,584	-0,551	-0,75		
4580	-0,538	-0,496	-0,68		
4745	-0,404	-0,383	-0,53		
4770	-0,384	-0,363	-0,51		
4895	-0,299	-0,283	-0,39		
4995	-0,249	-0,228	-0,32		
5100	-0,196	-0,188	-0,27		
5195	-0,159	-0,148	-0,22		
5800	-0,016	-0,016	-0,02		
6000	0	0	0		

Таблица 3. Экспериментальные и расчетные значения эффективности системы РБ при определении положительной реактивности

Таблица 4. Экспериментальные и расчетные значения эффективности системы РБ при определении отрицательной реактивности

Положение РБ	Эффективность РБ, β		
(шаг)	экспериментальный метод	расчетный метод	
4150	-1,04	-1,23	
4250	-0,915	-1,08	
4345	-0,787	-0,94	
4350	-0,785	-0,92	
4400	-0,724	-0,87	
4407	-0,724	-0,86	
4525	-0,597	-0,73	
4620	-0,508	-0,63	
4750	-0,404	-0,51	
4907	-0,299	-0,38	
5100	-0,196	-0,27	

На рисунке 2, а представлены три регулировочные характеристики реактора, построенные по результатам определения положительной реактивности (таблицы 1 и 3). На рисунке 2, б представлен участок регулировочной характеристики реактора, построенный по результатам измерения с помощью реактиметра положительной и отрицательной реактивности (таблицы 1–4). На этих же графиках нанесены расчетные значения положительной и отрицательной реактивности (таблицы 1–4). Кривые построены на участке регулировочной характеристики, соответствующем развороту системы РБ от 4000 до 6000 шагов. Кривые построены по результатам определения небольших (до 0,25 $\beta_{3\phi\phi}$) положительных значений реактивности, вводимой в критический реактор.

При измерении отрицательной реактивности реактора эффективность системы РБ по результатам физических измерений составила 10 $\beta_{эф\phi}$ и по результа-

там нейтронно-физических расчетов 11,58 $\beta_{3\phi\phi}$, а при измерении положительной реактивности – 0,18 $\beta_{3\phi\phi}$ и 0,25 $\beta_{3\phi\phi}$ соответственно. Измерения проводились при полном развороте системы РБ из положения 5100 шагов в 0.

Рисунок 2. Сравнение регулировочных характеристик реактора при определении положительной реактивности

Запас реактивности реактора с загруженной в ЦЭК реактора сборке 1 составил 0,884 $\beta_{3\phi\phi}$ при физическом измерении и 1,11 $\beta_{3\phi\phi}$ по результатам расчетов. Это значение соответствует состоянию реактора, при котором все РБ и стержни СКР полностью введены в реактор (положение стержней СКР с максимальной реактивностью).

Этап второй

Результаты экспериментов и расчетов по определению реактивности реактора путем введения положительной реактивности представлены в таблице 5. В таблице 6 представлены результаты эксперимента по определению значений вводимой отрицательной реактивности. Эксперименты и расчеты проводились при загруженной в ЦЭК реактора сборке 2. В таблицах 7 и 8 представлены экспериментальные и расчетные значения эффективности системы РБ, используемые для построения регулировочной кривой.

	Попожания				Реактивность, β	
N⁰	стержней СКР, мм	положение РБ (шаг)	РБ (шаг)	показания реактиметра	метод «установившегося периода»	расчетный метод
1	0	3089	3159	0,18	0,171	0,25
2	-200	3120	3160	0,115	0,100	0,14
3	-300	3230	3290	0,175	0,156	0,21
4	-350	3333	3393	0,17	0,152	0,19
5	-450	3640	3710	0,155	0,138	0,17
6	-500	3865	3945	0,145	0,134	0,16
7	-550	4165	4255	0,11	0,100	0,18
8	-600	4476	4556	0,070	0,059	0,09
9	-650	5000	5200	0,10	0,0924	0,11
10	-670	5240	5890	0,145	0,132	0,19
11	-700	5800	5950	-	0,016	0,02

Таблица 5. Результаты определения положительной реактивности

Таблица 6. Результаты определения отрицательной реактивности

No	Положение	Начальное	Конечное положение	ие Реактивность, β		
IN≌	стержней СКР (мм)	положение РБ (шаг)	РБ (шаг)	показания реактиметра	метод сброса стержня	расчетный метод
1	0	3090	2630	-1,8	-1,62	-1,72
2	0	3084	2267	-3,37	-3,15	-3,18
3	0	3095	1700	-5,2	-5,1	-5,22
4	0	3081	1476	-5,7	-5,65	-5,80
5	0	3080	0	-7,0	-6,63	-7,02
6	-200	3119	3019	-0,35	-0,317	-0,37
7	-200	3123	1833	-5,0	-4,91	-4,93
8	-300	3231	3121	-0,36	-0,326	-0,38
9	-300	3233	2933	-1,35	-1,2	-1,16
10	-350	3330	3220	-0,35	-0,315	-0,37
11	-450	3642	3532	-0,275	-0,237	-0,32
12	-450	3645	3300	-1,15	-0,987	-1,04
13	-500	3862	3772	-0,187	-0,166	-0,22
14	-500	3857	3470	-1,1	-0,99	-1,00
15	-550	4177	4068	-0,17	-0,152	-0,19
16	-550	4160	3000	-3,12	-2,97	-3,26
17	-600	4480	4370	-0,115	-0,103	-0,14
18	-600	4480	4100	-0,63	-0,55	-0,55
19	-650	4985	4875	-0,060	-0,0508	-0,07
20	-650	4980	4410	-0,42	-0,392	-0,53
21	-670	5255	5145	-0,042	-	-0,06
22	-670	5255	4740	-0,275	-0,252	-0,32
23	-670	5255	0	-10,5	-	-11,70
24	-670	5305	0	-11	-10,3	-11,72

На рисунке 3 представлены регулировочные характеристики реактора, построенные по результатам определения реактивности (таблицы 5–8). Для построения участков интегральной кривой было выполнено интегрирование ранее полученных соответствующих участков дифференциальной кривой. Экспериментальные точки были аппроксимированы полиномом пятого порядка, расчетные точки полиномом третьего порядка. Кривые построены на участке регулировочной характеристики, соответствующем развороту системы РБ от 3000 до 6000 шагов. Кривые построены по результатам определения небольших (до 0,2 $\beta_{3\phi\phi}$) положительных реактивностей (рисунок 3, а) и небольших (до 0,42 $\beta_{3\phi\phi}$) отрицательных значений реактивности (рисунок 3, б), вводимых в критический реактор.

Таблица 7. Экспериментальные и расчетные значения
эффективности системы РБ при определении
положительной реактивности

	Эффективность РБ, β				
Положение РБ (шаг)	реактиметр	метод «установившегося периода»	расчетный метод		
3089	-3,41	-3,12	-3,96		
3120	-3,35	-3,03	-3,85		
3159	-3,23	-2,95	-3,71		
3160	-3,23	-2,93	-3,71		
3230	-3,02	-2,72	-3,46		
3290	-2,85	-2,57	-3,26		
3333	-2,73	-2,45	-3,12		
3393	-2,56	-2,30	-2,93		
3640	-1,93	-1,75	-2,25		
3710	-1,77	-1,61	-2,07		
3865	-1,46	-1,33	-1,73		
3945	-1,31	-1,2	-1,57		
4165	-0,983	-0,891	-1,19		
4255	-0,873	-0,791	-1,06		
4476	-0,645	-0,579	-0,78		
4556	-0,575	-0,52	-0,69		
5000	-0,267	-0,249	-0,33		
5200	-0,167	-0,156	-0,22		
5240	-0,155	-0,143	-0,20		
5800	-0,016	-0,016	-0,03		
5890	-0,010	-0,011	-0,01		

Таблица 8. Экспериментальные и расчетные значения эффективности системы РБ при определении отрицательной реактивности

	Эффективность РБ, β				
(шаг)	реактиметр	метод «сброса	расчетный		
		стержня»	метод		
3019	-3,90	-3,48	-4,40		
3119	-3,55	-3,17	-4,03		
3121	-3,53	-3,16	-4,02		
3220	-3,21	-2,87	-3,67		
3231	-3,17	-2,83	-3,64		
3330	-2,86	-2,56	-3,31		
3532	-2,29	-2,04	-2,68		
3642	-2,01	-1,81	-2,37		
3772	-1,71	-1,55	-2,06		
3862	-1,53	-1,38	-1,84		
4068	-1,15	-1,05	-1,40		
4177	-0,981	-0,895	-1,21		
4370	-0,735	-0,671	-0,91		
4410	-0,683	-0,654	-0,85		
4480	-0,620	-0,568	-0,77		
4740	-0,418	-0,395	-0,51		
4875	-0,321	-0,311	-0,41		
4980	-0,263	-0,262	-0,32		
4985	-0,261	-0,260	-0,34		
5145	-0,185	-	-0,24		
5255	-0,143	-0,143	-0,19		

а) при определении положительной реактивности

б) при определении отрицательной реактивности

Рисунок 3. Сравнение регулировочных характеристик реактора

На рисунке 4 представлены графики сравнения регулировочных характеристик при определении положительных и отрицательных реактивностей. На рисунке 4, а показаны кривые, построенные по результатам расчетов и по результатам измерений с помощью реактиметра. На рисунке 4, б показаны кривые, построенные по результатам расчетов, и по результатам измерений с помощью метода «установившегося периода» и метода «сброса стержня».

На рисунке 5 представлены регулировочные характеристики реактора, построенные по результатам определения реактивности (таблица 9). Для построения участков интегральной кривой было выполнено интегрирование ранее полученных соответствующих участков дифференциальной кривой. Экспериментальные точки были аппроксимированы полиномом пятого порядка, расчетные точки полиномом третьего порядка. Кривые построены на участке регулировочной характеристики, соответствующем развороту системы РБ от 0 до 6000 шагов. Кривые построены по результатам определения больших (>0,5 $\beta_{эф\phi}$) отрицательных значений реактивности (рисунок 5), вводимых в критический реактор.

T

0 0

б)

Рисунок 4. Сравнения регулировочных характеристик реактора при определении положительных и отрицательных реактивностей

Рисунок 5. Сравнения регулировочных характеристик реактора при определении больших отрицательных значений реактивностей

Полная эффективность системы PБ, определенная методом «сброса стержня», составила 10,3±2 $\beta_{3\varphi\varphi}$, с помощью реактиметра – 11,0±2 $\beta_{3\varphi\varphi}$, расчетным методом – 11,72±0,04 $\beta_{3\varphi\varphi}$.

Гаолица 9. Экспериментальные и расчетные значения эффективности системы РБ при определении больших отрицательных значений реактивности				
	5, β			
(шаг)		метод «сброса	расчетный	

Попожение РБ	оффективноств т в, р				
(шаг)	реактиметр	метод «сброса стержня»	расчетный метод		
0	-10,4	-11,1	-11,70		
1476	-9,46	-9,82	-10,27		
1700	-8,91	-9,32	-9,59		
1833	-8,58	-8,97	-9,13		
2267	-6,96	-7,49	-7,42		
2630	-5,43	-5,92	-5,92		
2933	-4,52	-4,92	-4,72		
3000	-4	-4,21	-4,47		
3085	-3,81	-4,12	-4,24		
3123	-3,68	-3,97	-4,19		
3233	-3,32	-3,57	-		
3300	-3,09	-3,45	-3,40		
3470	-2,59	-2,8	-2,87		
3645	-2,1	-2,3	-2,37		
3857	-1,6	-1,7	-1,86		
4100	-1,14	-1,26	-1,34		
4160	-1,03	-1,11	-1,20		
4410	-0,661	-0,7	-0,85		
4480	-0,595	-0,631	-0,78		
4740	-0,402	-0,425	-0,51		
4980	-0,269	-0,28	-0,32		
5255	-0,15	-0,15	-0,19		
5800	-0,016	-0,016	-0,02		
6000	0	0	0		

Выводы

В результате проведенных исследований были определены регулировочные характеристики системы РБ для реактора ИВГ.1М экспериментальными и расчетными методами. В активную зону реактора загружены 28 ВОТК-ВОУ и два ВОТК-НОУ. Исследования проводились двумя этапами: первый этап – с загруженной в ЦЭК бериллиевой сборкой со сквозным каналом (сборка 1) и второй – с бериллиевой сборкой без экспериментальных каналов (сборка 2).

Анализ полученных экспериментальных и расчетных данных заключается в сравнении регулировочных характеристик системы РБ, определенных с помощью нейтронно-физических расчетов и измеренных методом «установившегося периода», методом «сброса стержня», и с помощью реактиметра.

В результате проведения серии из двух пусков П-17-02 и П-17-03 реактора ИВГ.1М и по результатам нейтронно-физических расчетов были решены следующие задачи:

 определен участок регулировочной характеристики РБ для реактора с загруженной в ЦЭК бериллиевой сборкой со сквозным каналом (сборка 1); определен участок регулировочной характеристики РБ для реактора с загруженной в ЦЭК бериллиевой сборкой без экспериментальных каналов (сборка 2);

определена эффективность системы РБ;

– определен запас реактивности реактора ИВГ.1М.

Полная эффективность системы РБ определенная методом «сброса стержня» составила $-10,3\pm 2$ $\beta_{3\phi\phi}$, с помощью реактиметра $-11,0\pm 2$ $\beta_{3\phi\phi}$, расчетным методом составила $-11,72\pm 0,04$ $\beta_{3\phi\phi}$.

При сравнении экспериментальных и расчетного методов оценки эффективности органов регулирования реактора ИВГ.1М выявили некоторые расхождения:

рассогласование результатов измерения эффективности РБ находится в пределах 10 %;

 – расчетный метод показывает результаты на 10–20 % больше, чем экспериментальные методы в малом диапазоне измерения (до 0,5 βэфф);

 измерения реактивности по реактиметру в диапазоне измерения до 10 βэфф хорошо согласуются с результатами расчетов.

ЛИТЕРАТУРА

- 1. Чертков Ю.Б. Измерение реактивности на реакторах стендового комплекса «Байкал-1». Методика. ОЭ НПО «Луч». Инв. № 3439, 1989.
- Азимханов А.С., Гановичев Д.А., Котов В.М., Колбаенков А.Н., Попов Ю.А., Дербышев И.К., Дюсенбаев А.С., Иркимбеков Р.А. Перегрузка центрального канала и проведение физических исследований на реакторе ИВГ.1М, анализ полученных экспериментальных данных. Отчет, №37-370-01/38вн. от 08.01.2018 г.
- MCNP-5.1.40 Monte-Carlo N-Particle Transport Code; Los Alamos National Laboratory; Los Alamos, New Mexico. April 24, 2003.
- 4. Иркимбеков Р.А., Жагипарова Л.К., Вурим А.Д., Котов В.М., Прозорова И.В. Компьютерная модель реактора ИВГ.1М для стационарных нейтронно-физических расчетов. А.с. № 2757 РК, 24.08.2018.
- 5. Жагипарова Л.К., Вурим А.Д., Котов В.М. и др. Моделирование реактора ИВГ.1М. Вестник НЯЦ РК, Курчатов, 2017, вып.3, с 59–64.
- 6. Проведение экспериментов по определению регулировочной характеристики и эффективности органов регулирования реактора ИВГ.1М. Программа. Инв. № 37-370-01/569 от 12.04.2017 г.

ИВГ.1М РЕАКТОРЫН РЕТТЕУ ОРГАНДАРЫНЫҢ ТИІМДІЛІГІ БАҒАЛАУДЫҢ ЭКСПЕРИМЕНТТІК ЖӘНЕ ЕСЕПТЕУ ӘДІСТЕМЕСІН КЕЛІСІМДЕУ

Л.К. Жагипарова, Р.А. Иркимбеков, И.К. Дербышев, В.С. Гныря

ҚР ҰЯО РМК «Атом энергиясы институты» филиалы, Курчатов, Қазақстан

Мақалада ИВГ.1М реакторының рективтілігін компенсациялау және реттеу органдарының тиімділігі мен сипаттарын анықтау бойынша физикалық зерттеулерді жүргізу сипаты берілген. Алынған эксперименттік және есептік мәліметердің талдаулары зерттеу ядролық реакторларда отынды байытуды төмендету жобасы аясында іске асырылды.

MATCHING OF EXPERIMENTAL AND COMPUTATIONAL METHODS FOR ASSESSING EFFICIENCY OF REGULATING ELEMENTS OF THE IVG.1M REACTOR

L.K. Zhagiparova, R.A. Irkimbekov, I.K. Derbyshev, V.S. Gnyrya

Branch "Institute of Atomic Energy" RSE NNC RK, Kurchatov, Kazakhstan

The paper presents description of physical research for determining characteristics and efficiency of regulating elements and reactivity compensation of the IVG.1M reactor, results of neutronic calculations of regulating element efficiency, experimental and calculation data analysis implemented within the project of fuel enrichment lowering at the research nuclear reactors.