МОДЕЛИРОВАНИЕ НА ЭВМ РАДИАЦИОННЫХ ПРОЦЕССОВ В ТВЕРДЫХ ТЕЛАХ, ОБЛУЧЕННЫХ ИОНАМИ

^{1, 2)} Купчишин А.И., ²⁾ Шафии С.А., ²⁾ Шмыгалева Т.А.

¹⁾ Казахский национальный педагогический университет им. Абая, Алматы, Казахстан ²⁾ Казахский национальный университет им. аль-Фараби, Алматы, Казахстан

Проведено моделирование на ЭВМ каскадно-вероятностных функций (КВФ) и концентрации вакансионных кластеров в зависимости от глубины h и от числа взаимодействий n. На примере имплантации титана в железо и алюминия в титан показано, что КВФ как в зависимости как от n, так и от h находятся в очень узком интервале области определения, в то время как концентрация кластеров в довольно широком интервале. Имеется обширный максимум, причем концентрация спадает до нуля на конце пробега иона.

Введение

В данной работе рассматривается процесс радиационного дефектообразования в твердых телах, облученных ионами в рамках каскадно-вероятностного метода (КВМ) [1–3], который является аналитическим. Все математические модели, описывающие эти процессы, получены как из физических соображений, так и из уравнений Колмогорова-Чэпмена [4–7].

Прохождение ионов через вещество является сложной задачей как при создании физической, так и математической моделей. Нами элементы классифицируются на легкие и тяжелые (по плотности элемента). Используется следующая физическая модель. Заряженная частица по пути своего движения непрерывно теряет свою энергию на ионизацию и возбуждение (потери энергии для каждого сорта частиц в зависимости от энергии известны и описаны аналитическими выражениями, в частности, формулой Бете-Блоха [3]). Соударения с атомами происходят дискретно. После столкновений первичные частицы сохраняют направление своего движения. При движении заряженных частиц через вещество их пробег зависит от энергии через сечение взаимодействия [3]. Вычисленное модифицированное сечение взаимодействия аппроксимируется следующим выражением:

$$\lambda(h) = \frac{1}{\lambda_0} \left(\frac{1}{a(E_0 - kh)} - 1 \right), \tag{1}$$

где λ_0 , *a*, *E*₀, *k* – параметры аппроксимации, $\sigma_0 = 1/\lambda_0$.

Из рекуррентного соотношения для вероятностей перехода

$$\psi_{n}(h, E_{0}) = \int_{0}^{n} \psi_{n-1}(h', E_{0})\psi_{0}(h', E_{0}) \cdot \frac{1}{\lambda_{0}} \left(\frac{1}{a(E_{0} - kh')} - 1\right) dh'$$
(2)

получается выражение для КВФ с учетом потерь энергии для ионов в следующем виде:

$$\psi_{n}(h, E_{0}) = \frac{1}{n!\lambda_{0}^{n}} \left(\frac{E_{0}}{E_{0} - kh}\right)^{-l} \cdot \exp\left(\frac{h}{\lambda_{0}}\right) \cdot \left[\frac{\ln\left(\frac{E_{0}}{E_{0} - kh}\right)}{ak} - h\right]^{n}, \quad (3)$$

где n – число взаимодействий, h – глубина регистрации иона, $l = 1/(\lambda_0 a k)$.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Расчеты каскадно-вероятностных функций с учетом потерь энергии для ионов в зависимости от числа взаимодействий и глубины проникновения частиц проводились по формуле:

$$\psi_{n}(h, E_{0}) = \exp\left[-\ln(n!) - n \cdot \ln(\lambda_{0}) - \frac{1}{\lambda_{0}ak}\ln\left(\frac{E_{0}}{E_{0} - kh}\right) + \frac{h}{\lambda_{0}} + \dots \quad (4)$$
$$+ n \cdot \ln\left(\frac{\ln\left(\frac{E_{0}}{E_{0} - kh}\right)}{ak} - h\right)\right]$$

Результаты расчета КВФ в зависимости от числа взаимодействий представлены на рисунке 1, от глубины проникновения – на рисунке 2.

При проведении расчетов КВФ в зависимости от числа соударений и глубины проникновения частиц выявлены закономерности поведения области результата. Отметим некоторые из них. Закономерности поведения области результата в зависимости от числа взаимодействий заключаются в следующем:

1. С уменьшением первоначальной энергии (налетающая частица и мишень одна и та же) при одной и той же глубине область результата сужается и смещается в область малых глубин.

2. С увеличением атомного веса налетающей частицы область нахождения результата смещается в область малых глубин относительно h/λ и сужается.

3. При большом атомном весе налетающей частицы максимальное значение КВФ смещается в область малых глубин относительно h/λ уже при небольших h, а при больших h результат находится в узкой области.

4. Самая малая область результата получается при большом атомном весе налетающей частицы и небольшом А мишени.

Рисунок 1. Зависимость КВФ от числа взаимодействий для титана в железе при h = 0,0001; 0,0002; 0,0003 (см); $E_0 = 1000 \text{ кэВ } (1-3)$

Рисунок 2. Зависимость КВФ от глубины проникновения для алюминия в титане при E₀ = 800 кэВ для n = 732; 2702; 5697 (1 – 3)

Приведем закономерности, возникающие при нахождении реальной области в зависимости от глубины проникновения:

1. При малом атомном весе налетающей частицы и небольших глубинах область результата КВФ в зависимости от h находится вблизи h, которое соответствует h/λ . С увеличением глубины наблюдения область результата смещается в область больших глубин и сужается.

2. С уменьшением первоначальной энергии частицы (налетающая частица и мишень одна и та же) при одной и той же глубине наблюдения область результата смещается в область больших глубин и сужается.

 С увеличением глубины наблюдения для любой налетающей частицы и любой мишени область результата смещается в область больших глубин.

4. В зависимости от атомного номера налетающей частицы при одном и том же значении глубины

h область результата смещается в область больших глубин.

5. При большом значении атомного номера налетающей частицы область результата смещается в область больших глубин относительно h, соответствующего h/λ уже при малых глубинах и область результата значительно сужается.

Для автоматизации и оптимизации нахождения области результата КВФ в зависимости от числа взаимодействий и глубины проникновения были реализованы алгоритмы Тернарного [8] и Бинарного [9] поиска. Алгоритм Тернарного поиска был модифицирован с учётом специфики КВФ. В существующих алгоритмах используется коэффициент деления, равный 3 (тернарный поиск). В разработанном программном комплексе коэффициент может варьироваться. Двоичный (бинарный) поиск (также известен как метод деления пополам и дихотомия) - классический алгоритм поиска элемента в отсортированном массиве (векторе), использующий дробление массива на половины. Он используется в информатике, вычислительной математике и математическом программировании. Троичный поиск (Тернарный поиск) – это метод в информатике для поиска максимумов и минимумов функции, которая либо сначала сильно возрастает, затем сильно убывает, либо наоборот. Троичный поиск определяет, что минимум или максимум не может лежать либо в первой, либо в последней трети области, и затем повторяет поиск на оставшихся двух третях. Для оптимизации алгоритмов расчета КВФ в зависимости от числа взаимодействий и глубины проникновения частиц, концентрации вакансионных кластеров используются формулы Стирлинга [10]:

$$n! \approx n^n e^{-n} \sqrt{2\pi n} , \qquad (5)$$

$$\ln n! \approx (n + \frac{1}{2}) \ln n - n + \frac{1}{2} \ln(2\pi) .$$
 (6)

Ионы основную часть своей энергии тратят на ионизацию и возбуждение атомов среды (до 99 %) и только ~1 % идет на образование дефектов атомной структуры. При взаимодействии ионов с материалом могут образовываться большие скопления вакансионных и междоузельных атомов.

Расчет концентрации вакансионных кластеров при ионном облучении выполняется по формуле [1]:

$$C_{k}(E_{0},h) = \int_{E_{c}}^{E_{2}\max} W(E_{0},E_{2},h)dE_{2}, \qquad (7)$$
$$E_{2}\max} = \frac{4m_{1}c^{2}m_{2}c^{2}}{(m_{1}c^{2}+m_{2}c^{2})^{2}}E_{1},$$

 $E_{2\max}$ – максимально возможная энергия, приобретенная атомом, m_1c^2 – энергия покоя иона. $C_k(E_0,h)$ определяется с учетом того, что энергия частицы на глубине *h* есть $E_l(h)$. Так как $E_1(h) = E_0 - \Delta E(h)$, то за-

давая потери энергии на ионизацию и возбуждение $\Delta E(h)$, получаем соответствующие глубины наблюдений *h* из формулы Бете-Блоха. Спектр первичновыбитых атомов определяется следующим соотношением:

$$W(E_{0}, E_{2}, h) = \sum_{n=n_{0}}^{n_{1}} \int_{h-k\lambda_{2}}^{h} \psi_{n}(h') \exp\left(-\frac{h-h'}{\lambda_{2}}\right) \cdot \frac{w(E_{1}, E_{2}, h')dh'}{\lambda_{1}(h')\lambda_{2}}, \quad (8)$$

где *n*₀, *n*₁ – начальное и конечное значение числа взаимодействий из области определения каскадно-вероятностной функции (3).

Нормированный спектр ПВА $\omega(E_1, E_2, h')$ в элементарном акте вычисляется по формуле:

$$\omega(E_1, E_2) = \frac{d\sigma(E_1, E_2) / dE_2}{\sigma(E_1)} . \tag{9}$$

Используя выражение (9) имеем:

$$C_{k}\left(E_{0},h\right) = \frac{E_{d}}{E_{c}} \frac{\left(E_{2\max}-E_{c}\right)}{\left(E_{2\max}-E_{d}\right)} \cdot \frac{\sum_{n=n_{0}}^{n_{1}} \int_{h-k\lambda_{2}}^{h} \psi_{n}(h') \exp\left(-\frac{h-h'}{\lambda_{2}}\right) \frac{dh'}{\lambda_{1}(h')\lambda_{2}}, \quad (10)$$

где E_d – средняя энергия смещения, E_0 – первоначальная энергия частицы, E_c – пороговая энергия.

Результаты расчетов концентрации вакансионных кластеров представлены на рисунках 3, 4.

Концентрация Ск имеют следующее поведение: для легких налетающих частиц кривые возрастают, достигая максимума, затем убывают до нуля. С увеличением первоначальной энергии частицы кривые смещаются вправо. С увеличением пороговой энергии Е_с значения концентрации уменьшаются и кривые проходят значительно ниже, переход через максимум осуществляется плавней. При энергиях $E_0 =$ 100 кэВ кривая убывает. С увеличением атомного веса налетающей частицы значение функции в точке максимума увеличивается и, следовательно, кривые проходят выше, в то время как значения глубин уменьшаются. Для автоматизации нахождения области результата концентрации кластеров также были использованы алгоритмы Бинарного и Тернарного поиска. Проведена оптимизация алгоритмов расчета с использованием формул (5), (6). После проведения оптимизации в формулах (4), (10) получено, что время счета значительно сократилось. Например, для германия в алюминии при $E_0 = 1000$ кэВ, $E_1 = 120$ кэВ время расчёта составляло 1 час 44 минуты. После оптимизации время расчёта составило менее 1 минуты. Сравнение результатов расчетов до оптимизации и после нее приведено в таблице.

Рисунок 3. Зависимость концентрации вакансионных кластеров от глубины при ионном облучении меди гелием различных энергий при E_c = 50 кэВ

Рисунок 4. Зависимость концентрации вакансионных кластеров от глубины при ионном облучении меди гелием при E₀ = 1000 кэВ и различных E_c

Таблица. Границы области определения концентрации вакансионных кластеров для германия в кремнии при E_c = 50 кэВ и E₀ = 1000 кэВ

<i>h</i> ·10⁴, см	Ск, см	<i>Е</i> ₀, кэВ	<i>n</i> 0	n 1	T 1	T 2
0,1	10476	1000	219	560	5'	1"
5,3	17598	800	25146	27958	10'	2"
10,6	29380	600	69624	74258	25'	3"
15,8	51189	400	147578	154312	1ч	7"
18,9	77629	300	227841	236220	3 ч 29'	15"
19,9	90354	260	264188	273220	4 ч 12'	20"
20,9	107041	220	308961	318741	5 ч 30'	25"
21,8	124137	180	359803	368257	7 ч 06'	35"
22,3	123290	140	394307	403204	10 ч 01'	1'
23,2	118373	100	474116	486299	12 ч 41'	2'
23,9	50357	70	563193	575375	15 ч 26'	7'
24,1	-20064	60	596160	608342	17 ч 19'	10'

Здесь т1, т2- время расчета до проведения оптимизации и после нее.

Выводы

1. Составлен алгоритм, программа и проведено моделирование на ЭВМ каскадно-вероятностных функций (КВФ) в зависимости от глубины h и от числа взаимодействий п и концентрации вакансионных кластеров от h при различных E_0 и E_c .

2. На примере имплантации титана в железо и алюминия в титан найдена область определения ис-

ЛИТЕРАТУРА

- Э.Г. Боос, А.А.Купчишин, А.И.Купчишин, Е.В. Шмыгалев, Т.А.Шмыгалева. Каскадно-вероятностный метод, решение радиационно-физических задач, уравнений Больцмана. Связь с цепями Маркова. Монография. – Алматы: КазНПУ им. Абая, НИИ НХТ и М КАзНУ им. аль-Фараби, 2015. – 388 с.
- Босс Э.Г., Купчишин А.И. Решение физических задач каскадно-вероятностным методом. Алма-Ата: Наука. 1988. Т.1. – 112 с.
- Босс Э.Г., Купчишин А.И. Решение физических задач каскадно-вероятностным методом. Алма-Ата: Наука. 1988. Т.2. – 144 с.
- 4. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов инженерные приложения. М.: Наука, 1991. 383 с.
- 5. Гутер Р.С., Овчинский Б.В. Основы теории вероятностей. М.: Просвещение, 1967. 159 с.
- 6. Колмогоров А.Н. Основные понятия теории вероятностей. М.: Наука, 1974. 119 с.
- 7. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, 1984. Т.1. 527 с.
- 8. Волков Е. А. Численные методы. М.: Физматлит, 2003. 576 с.
- 9. Левитин А.В. Алгоритмы. Введение в разработку и анализ. М.: Вильямс, 2006. С. 180–183.
- 10. Pearson K. Historical note on the origin of the normal curve of errors, BiometrikaT. 1924. Vol. 16. P. 402-404.

ИОНДАРМЕН СӘУЛЕЛЕНГЕН ҚАТТЫ ДЕНЕЛЕРДЕГІ РАДИАЦИОНДЫҚ ПРОЦЕССТЕРДІ ЭЕМ-ДЕ МОДЕЛЬДЕУ

^{1, 2)} А.И. Купчишин, ²⁾ С.А. Шафии, ²⁾ Т.А. Шмыгалева

¹⁾ Абай атындағы Қазақ ұлттық педагогикалық университеті, Алматы, Қазақстан ²⁾ әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан

ЭЕМ-де каскадты-ықтимал функцияларды (КЫФ) және *h* тереңдігіне және *n* өзара iс-қимыл санына байланысты бос орын кластерлерiнiң шоғырлануын модельдеу жүргiзiлдi. Титанға титан және темiр алюминийге имплантациясы мысалында КЫФ *n*-ге, сондай-ақ *h*-ға байланысты анықтау аймағының өте тар интервалында, ал кластерлердiң шоғырлануы өте кең интервалда екенiн көрсетедi. Үлкен максимум бар, және шоғырлану ион жүрiсiнiң соңында нөлге дейiн түседi.

MODELING ON COMPUTER RADIATION PROCESSES IN SOLIDS IRRADIATED BY IONS

^{1, 2)} A.I. Kupchishin, ²⁾ S.A. Shafii, ²⁾ T.A. Shmygaleva

Kazakh National Pedagogical University named after Abai, Almaty, Kazakhstan ²⁾ Kazakh National University named after al-Farabi, Almaty, Kazakhstan

The computer simulation of cascade-probabilistic functions (CPF) and the concentration of vacancy clusters depending on the depth h and the number of interactions n is carried out. By the example of titanium implantation in iron and aluminum in titanium, it is shown that the CPF as a function of both n and h are in a very narrow range of the domain of determination, while the concentration of clusters in a fairly wide range. There is an extensive maximum, and the concentration drops to zero at the end of the ion run.

следуемых функций и показано, что КВФ как в зависимости как от n, так и от h находятся в очень узком интервале области определения, в то время как концентрация кластеров – в довольно широком интервале. Имеется обширный максимум, причем концентрация спадает до нуля на конце пробега иона.