УДК 550.34:621.039.9

РКІКР_{ВС} НА ТРАССЕ НЕВАДА – СТАНЦИЯ «МИРНЫЙ» (АНТАРКТИДА)

¹⁾ Непеина К.С., ²⁾ Ан В.А.

¹⁾ Научная станция РАН в г. Бишкеке, Бишкек, Кыргызстан ²⁾ Институт динамики геосфер им. академика М.А. Садовского РАН, Москва, Россия

Приведены локальные годографы и линейные тренды времени пробега волны *PKIKP_{BC}* на трассе Невадский полигон (NTS) – станция «Мирный» (MIR). Для этих исследований систематизированы и обработаны сейсмограммы станции «Мирный» в Антарктиде, предоставленные Геофизической службой РАН (г. Обнинск, Московская область). Использованы 120 сейсмограмм, полученные сейсмографом Кирноса (CBKM) в период 13 мая 1966 – 18 октября 1991 гг.: по 60 сейсмограмм для каждой из площадок – Pahute и Yucca Невадского полигона (NTS), когда на них проводились подземные ядерные взрывы. Установлено увеличение времени пробега с годами, как и на трассах Невадский полигон – Боровое [14]. Получена зависимость времён вступления продольной волны *PKIKP_{BC}* от магнитуды m_b. Полученные могут быть использованы для сравнения с результатами изучения волны *PKIKP_{BC}* от взрывов Невадского полигона по другим станциям, например, на антарктической станции «Новолазаревская».

Введение

Сейсмическая станция «Мирный» (MIR: $\varphi = -66^{\circ}33'00,0$ " S, $\lambda = 93^{\circ}00'00,0$ " Ė, h = 34 м) построена (рисунок 1) во время Первой комплексной антарктической экспедиции (1 КАЭ), руководимой доктором М. М. Сомовым, в 1956 г. В создании станции участвовали сотрудники Арктического и антарктического научно-исследовательского института (ААНИИ) – младший научный сотрудник-сейсмолог Сытинский А.Д., и Института физики Земли (ИФЗ) АН СССР - старший техник-геофизик Поликарпов В.М. [1]. Одному из авторов данной статьи посчастливилось участвовать в работе сейсмической станции во время 4 КАЭ в то время в качестве младшего научного сотрудника ИФЗ АН СССР (рисунок 2) [2].

Рисунок 1. Сейсмическая станция «Мирный» (MIR), 1959 г.

В 1959 году на сейсмостанции «Мирный» проводилась круглосуточная фотооптическая регистрация сейсмических сигналов с использованием комплекта вертикальных (СВК) и горизонтальных (СГК) сейсмографов Д.П. Кирноса, длиннопериодного вертикального сейсмографа СВКД, вертикального модернизированного сейсмографа СВКМ и электродинамического микробарографа ЭДМБ-4 [3] (рисунок 3).

б)

Рисунок 2. Вход в сейсмостанцию «Мирный»: до пурги (а) и после пурги (б) (перед входом – участник 4 КАЭ Ан В.А.), 1959 г.

Вверху – трёхкомпонентная установка сейсмометров СГК (горизонтальная компонента NS). Внизу – сейсмометры: слева – вертикальный СВК, в центре – вертикальный модернизированный СВКМ, справа СГК (горизонтальная компонента EW) и микробарограф ЭДМБ – 4 для регистрации акустических сигналов в атмосфере как от различных природных источников, так и от воздушных ядерных взрывов

Рисунок 3. Приборное оснащение станции «Мирный», 1959 г.

Рисунок 4. Переопределение постоянных сейсмометра на сейсмостанции «Мирный», 1959 г.

Трёхкомпонентная установка сейсмографов Кирноса имела диапазон периодов измерения колебаний почвы 0,1-30 с, максимальное увеличение по вертикальной составляющей (Z) – порядка 800, по горизонтальным составляющим (СЮ и ВЗ) – порядка 1500, в диапазоне периодов 7-9 с. Амплитудно-частотная характеристика (АЧХ) вертикального канала СВКМ определяла полосу пропускания 0,05-30 с и имела максимум увеличения ~10-11 тысяч в диапазоне периодов 0,5-1,5 с. Служба времени осуществлялась по радиосигналам WWV (Вашингтон) на частотах 5, 10, 15 МГц. Во время сильных ветров, часто низовых, радиоприём нарушался из-за статической электризации антенны сейсмостанции. В таких случаях использовалась радиотрансляционная сеть обсерватории Мирный (сигналы поверки времени – СПВ, из Москвы), так как антенны радиоцентра были направленными и расположены гораздо выше. В этом случае были возможны погрешности времени, «не превышающие 0,3 с для европейской территории СССР и 0,5 с для других районов страны» [4]. С учетом этого

в данном исследовании использованы времена пробега, не выходящие за пределы $\pm 0,5$ с от среднего значения.

Коррекция и переопределение постоянных сейсмометров проводилась в подвальном помещении сейсмостанции «Мирный» (рисунок 4). Рабочее место сейсмолога с журналами записей, лентами фотооптической регистрации располагалось в небольшой комнате (рисунок 5) со стандартным набором бытовых предметов (стол, настольная лампа и телефон для связи, стул, кровать).

Рисунок 5. Рабочее место сейсмолога на станции «Мирный», 1959 г.

ИСХОДНЫЕ ДАННЫЕ

К проведенным исследованиям привлечены сейсмограммы станции «Мирный» в Антарктиде, предоставленные Геофизической службой РАН (г. Обнинск Московской области). Обработана 161 сейсмограмма подземных ядерных испытаний, произведенных в период 17 декабря 1961 г. – 18 октября 1991 г. на трех площадках Невадского полигона США (NTS): Pahute (65 взрывов), Yucca (85 взрывов), Rainier (6 взрывов), –и в других районах США (5 взрывов), зарегистрированных сейсмической станцией «Мирный».

Предметом изучения являлась объемная продольная сейсмическая волна, проходящая через мантию и внешнее ядро Земли и преломленная вблизи границы внутреннего земного ядра Земли РКІКР_{ВС} [5]. Волна *РКІКР*_{ВС}, как и другие сейсмические волны [6], представляет интерес для исследователей, так как отражает внутреннее строение Земли, как планеты Солнечной системы. Знание о скорости распространения волны РКІКР вс обеспечивает применимость различных моделей для описания границы внутреннее внешнее ядро Земли. Сложность её определения заключается в том, чтобы найти приемные станции на значительном удалении от источника [7]. В нашем случае для трассы Невадский полигон (NTS) - станция «Мирный» (MIR) эпицентральное расстояние составляет ≈146°, что равнозначно длине трассы $\approx 16\ 000\$ км. Изучение как отраженных (*PKiKP*), так и преломленных волн (РКІКР) актуально и на сегодняшний день [8], особенно при сравнении одинаковых событий на удаленных (>120°) дистанциях.

Для анализа локальных годографов и линейных трендов времени пробега продольной волны *РКІКР_{вс}* на трассе Невадский полигон (NTS) – станция «Мирный» (MIR) использованы сейсмограммы 120 взрывов периода времени с 1966 г. (13.05.1966 Рігапһа) до 1991 г. (18.10.1991 Lubbock) – по 60 взрывов на каждой из площадок Pahute и Yucca, – с магнитудой $m_b = 4,7-6,5$; эпицентральным расстоянием $\Delta = 146,072^\circ-146,272^\circ$; азимутом Az = 135,08°– 135,94°.

Результаты предыдущих исследований [5, 6, 9– 13] позволили дополнить информацию о существовании границы между мантией и ядром. Более того, они дали основания для подтверждения рабочей гипотезы о вращении ядра. Было установлено, что точность определения времен пробега параметров отраженных и преломленных волн глубинных фаз от подземных взрывов требуется повысить для исследования вариаций внутреннего строения Земли [8].

Эпицентральные параметры (время в очаге и координаты источника) испытаний на Невадском полигоне (NTS) приведены в [9]. К сожалению, в источнике имеется много опечаток, обнаруженных ранее при анализе времён вступления продольной волны на станции геофизической обсерватории «Боровое» (BRVK) [10]. Поэтому одной из задач данных исследований является устранение ошибок и предоставление достоверных данных. В частности, установлены следующие опечатки: 1) в названиях взрывов в таблице (уточнены в таблице [9]); 2) в названиях площадки испытания [9]. Должно быть: а) 26-09-1979, Sheepshead – площадка Pahute, б) 26-03-1983, Cabra - площадка Pahute, в) 02-04-1985, Hermosa - площадка Yucca; 3) в указании времени испытания по тексту [10]. Должно быть: а) 15.06.1966 г. время взрыва Double Play $-t_0 = 17:00:00.04$ [11, 12]; 6) 24.09.1968 г. время взрыва Hudson Seal $- t_0 = 17:05:01.09$ [11]; в) 29.10.1969 г. время взрыва Pod A – *t*₀ = 20:00:**00.04** [11, 12]; г) 17.05.1972 г. время взрыва Zinnia – *t*₀ = 14:**10:**00.16 [11, 13]; д) 28.02.1975 г. время взрыва Topgallant $-t_0 = 15:15:00.00$ (ISC, USCGS); e) 07.03. 1975 г. время взрыва Cabrillo – $t_0 = 15:00:00.17$ (ISC, USCGS); ж) 30.04.1975 г. время взрыва Obar *t*₀ = 15:00:**01.90** [11]; з) 11.11.1981 г. время взрыва Tilci – t₀ = 20:00:00.09 (DOE, USCGS); и) 18.04.1987 г. время взрыва Delamar – $t_0 = 13:40:00.60$ (USGS).

В процессе обработки сейсмограмм было обращено внимание на следующее:

– если для испытаний 17.03.1976 Strait (Yucca) и 13.06.1990 Bullion (Pahute) время пробега уменьшить на одну секунду, то они удовлетворяют на линию локального годографа. Отскок значения от прямой линии построенного годографа подтверждает наличие ошибки. Возможные ошибки во временах вступлений продольной волны этих взрывов, скорее всего, связаны с погрешностью привязки к службе времени сейсмостанции «Мирный» на +1 с.

 значения усиление (увеличение масштаба сигнала) по составляющим сейсмометра СВКМ сейсмической станции «Мирный» для записи изменялись, в основном, в пределах $V_m = 12500 - 26300$, возрастая иногда до 51080 (март, май, октябрь 1970 г.). На сейсмограммах в период 17.12.1961-22.10.1964 усиление сигнала отсутствует, поскольку, видимо, не применялось; а с 04.08.1977 по 14.12.1977 – на сейсмограммах от взрывов обнаружен эффект обратной полярности, то есть «смена положительных амплитуд на отрицательные и наоборот». Иногда, сигнал не наблюдается (при $m_b = 5, 5-5, 9$). Причина не выяснена, однако, возможно, это обусловлено разными способами записи. Систематизация на станции в Антарктиде велась операторами в разные годы (и много лет назад), каждый год оператор сменялся, а потому примечания (пометки и др.) не были идентичными. Наша задача состояла в приведении в порядок сохранившейся информации.

Результаты обработки сейсмограмм станции «Мирный» с определением времени пробега волны *PKIKP_{BC}* по записям подземных взрывов и с использованием параметров, опубликованных ранее в нескольких работах [9–13] в виде значений, уточненных в процессе выполненной проверки, приведены в нижеследующей таблице.

Дальнейший анализ сводится к оценке стандартных для такого рода исследований показателей – констант в уравнении годографа и его наклона. При построении локального годографа использовались параметры времени пробега волны $PKIKP_{BC}$ на трассе NTS – MIR и эпицентральное расстояние Δ° из вышеприведенной таблицы (зависимость $t_{p1} = F$ (Δ°)). На рисунке 6 представлен полученный локальный годограф.

Для изучения особенностей распределения пространственно-временных вариаций времен пробега сейсмических волн оценены и другие зависимости, в частности, от календарной даты или магнитуды. Методика оценки линейного тренда времени пробега продольной волны РКІКР_{ВС} приведена в одной из предыдущих публикаций авторов [14]. При расчете тренда (δt) в миллисекундах за год вместо эпицентрального расстояния по оси Х используется время взрыва, которое приведено в календарном времени (зависимость $t_{p1} = F(T)$). Линия тренда времени пробега продольной волны РКІКР_{ВС} рассчитывалась для среднегодовых значений времен пробега волны *РКІКР*_{ВС}. Использовано среднее значение величины времени (t_{pl}) для взрывов, произведенных на Невадском полигоне в один и тот же год. Результат для изучаемой трассы показан на рисунке 7. Важным фактором при исследовании вариаций времени пробега сейсмических волн в календарном времени является также точность географических координат взрыва [6].

NºNº ⊓/⊓	Дата дд-мм-гг	Название испытания	m _b	Время в очаге чч-мм-сс	Δ°	Az° от MIR	<i>t</i> _{p1} , c	Примечания
1	30-06-1966	Halfbeak	6,0	22-15-00.07	146,246	135,40	1181,14	<i>t</i> _{₽1} max (+ № 25), Pahute
2	20-12-1966	Greeley	6,3	15-30-00.08	146,203	135,26	1180,49	Pahute
3	23-05-1967	Scotch	5.7	14-00-00.04	146.188	135.33	1180.40	Pahute
4	26-05-1967	Knickerbocker	5.5	15-00-01.50	146.133	135.19	1180.24	Pahute
5	26-04-1968	Boxcar	6.3	15-00-00.07	146.182	135.20	1180.72	Pahute
6	15-06-1968	Rickey	5,9	13-59-59.97	146,194	135,41	1180,68	Pahute
7	28-06-1968	Chateaugay	5.3	12-22-00.08	146.128	135.19	1180.80	Pahute
8	29-08-1968	Sled	5,9	22-45-00.04	146,171	135,37	1180,67	Pahute
9	19-12-1968	Benham	6,3	16-30-00.04	146,118	135,22	1180,38	Pahute
10	07-05-1969	Purse	5,8	13-45-00.04	146,159	135,15	1180,71	Pahute
11	16-09-1969	Jorum	6,2	14-30-00.04	146,199	135,18	1180,47	Pahute
12	08-10-1969	Pipkin	5,5	14-30-00.14	146,151	135,24	1180,58	Pahute
13	26-03-1970	Handley	6,5	19-00-00.20	146,165	135,09	1180,55	Pahute
14	06-06-1973	Almendro	6,1	13-00-00.08	146,167	135,38	1180,69	Pahute
15	14-05-1975	Tybo	6,0	14-00-00.16	146,108	135,22	1180,62	Pahute
16	03-06-1975	Stilton	5,9	14-20-00.17	146,206	135,08	1180,65	Az° min, Pahute
17	19-06-1975	Mast	6,1	13-00-00.09	146,272	135,35	1180,52	∆° max, Pahute
18	26-06-1975	Camembert	6,2	12-30-00.16	146,192	135,33	1180,44	Pahute
19	28-10-1975	Kasseri	6,4	14-30-00.16	146,191	135,26	1180,50	Pahute
20	20-11-1975	Inlet	6,0	15-00-00.09	146,142	135,36	1180,58	Pahute
21	03-01-1976	Muenster	6,2	19-15-00.16	146,219	135,36	1180,44	Pahute
22	12-02-1976	Fontina	6,3	14-45-00.16	146,153	135,17	1180,46	Pahute
23	14-02-1976	Cheshire	6,0	11-30-00.16	146,144	135,28	1180,72	Pahute
24	09-03-1976	Estuary	6,0	14-00-00.09	146,222	135,31	1180,98	Pahute
25	17-03-1976	Pool	6,1	14-15-00.09	146,182	135,39	1181,14	Pahute
26	11-04-1978	Backbeach	5,5	17-45-00.07	146,149	135,36	1180,58	Pahute
27	31-08-1978	Panir	5,6	14-00-00.16	146,193	135,34	1180,72	Pahute
28	16-12-1978	Farm	5,5	15-30-00.16	146,175	135,27	1180,57	Pahute
29	11-06-1979	Pepato	5,5	14-00-00.17	146,178	135,20	1180,76	Pahute
30	26-09-1979	Sheepshead	5,6	15-00-00.09	146,147	135,36	1180,62	Pahute
31	26-04-1980	Colwick	5,4	17-00-00.08	146,148	135,27	1180,84	Pahute
32	12-06-1980	Kash	5,6	17-15-00.09	146,171	135,21	1180,58	Pahute
33	25-07-1980	Tafi	5,6	19-05-00.08	146,140	135,19	1180,67	Pahute
34	25-04-1982	Gibne	5,4	18-05-00.01	146,156	135,27	1180,56	Pahute
35	24-06-1982	Nebbiolo	5,6	14-15-00.09	146,152	135,35	1180,64	Pahute
36	25-07-1984	Kappeli	5,4	15-30-00.08	146,170	135,28	1180,60	Pahute
37	09-12-1984	Egmont	5,5	19-40-00.09	146,148	135,16	1180,63	Pahute
38	02-05-1985	Towanda	5,7	15-20-00.08	146,180	135,40	1181,06	Pahute
39	12-06-1985	Salut	5,5	15-15-00.06	146,129	135,18	1180,70	Pahute
40	25-07-1985	Serena	5,2	14-00-00.09	146,190	135,22	1180,84	Pahute
41	22-04-1986	Jefferson	5,3	14-30-00.09	146,158	135,24	1180,71	Pahute
42	25-06-1986	Darwin	5,5	20-27-45.09	146,142	135,16	1180,71	Pahute
43	17-07-1986	Cybar	5,7	21-00-00.06	146,196	135,34	1180,95	Pahute
44	30-09-1986	Labquark	5,5	22-30-00.10	146,229	135,39	1180,95	Pahute
45	16-10-1986	Belmont	5,6	19-25-00.09	146,111	135,24	1180,83	Pahute
46	13-12-1986	Bodie	5,5	17-50-05.09	146,165	135,28	1180,31	Pahute
47	18-04-1987	Delamar	5,5	13-40-00. 60	146,124	135,16	1180,98	USGS , Pahute
48	30-04-1987	Hardin	5,5	13-30-00.09	146,134	135,28	1180,82	Pahute
49	24-09-1987	Lockney	5,7	15-00-00.06	146,143	135,35	1180,51	Pahute

Таблица. Результаты обработки сейсмограмм на трассе Невадский полигон – станция «Мирный» (NTS – MIR). Волна РКІКР_{ВС}

РКІКР_{ВС} НА ТРАССЕ НЕВАДА – СТАНЦИЯ «МИРНЫЙ» (АНТАРКТИДА)

NºNº	Дата	Название	m	Время в очаге	٨٥	Az°	t-c C	Примечания
п/п	дд-мм-гг	испытания		ЧЧ-ММ-СС		от MIR	срт, С	
50	02-06-1988	Comstock	5,4	13-00-00.09	146,154	135,24	1180,54	Pahute
51	07-07-1988	Alamo	5,6	15-05-30.07	146,165	135,33	1180,46	Pahute
52	22-06-1989	Contact	5,3	21-15-00.08	146,184	135,26	1180,75	Pahute
53	31-10-1989	Hornitos	5,7	15-30-00.09	146,143	135,17	1180,72	Pahute
54	08-12-1989	Barnwell	5,5	15-00-00.09	146,136	135,30	1180,76	Pahute
55	13-06-1990	Bullion	5,7	16-00-00.09	146,162	135,27	1180,31	Pahute
56	12-10-1990	Tenabo	5,6	17-30-00.08	146,128	135,18	1180,68	Pahute
57	14-11-1990	Houston	5,4	19-17-00.07	146,143	135,35	1180,93	Pahute
58	04-04-1991	Bexar	5,6	19-00-00.00	146,224	135,39	1180,95	Pahute
59	16-04-1991	Montello	5,4	15-30-00.07	146,140	135,25	1180,68	Pahute
60	14-09-1991	Ноуа	5,5	19-00-00.08	146,126	135,28	1180,77	Pahute
61	13-05-1966	Piranha	5,6	03-30-00.04	146,107	135,90	1180,52	Yucca
62	19-05-1966	Dumont	5,9	13-56-28.14	146,122	135,85	1180,56	Yucca
63	03-06-1966	Tan	5,7	14-00-00.04	146,088	135,91	1180,44	Yucca
64	20-05-1967	Commodore	5,9	15-00-00.20	146,138	135,85	1180,42	Yucca
65	27-09-1967	Zaza	5,7	17-00-00.04	146,112	135,86	1180,66	Yucca
66	18-10-1967	Lanpher	5,7	14-30-00.08	146,127	135,84	1180,58	Yucca
67	21-02-1968	Knox	5,8	15-30-00.00	146,129	135,85	1180,66	Yucca
68	06-09-1968	Noggin	5,6	14-00-00.13	146,149	135,85	1180,76	Yucca
69	30-04-1969	Blenton	5,2	17-00-00.04	146,106	135,93	1180,04	ближе
70	16-07-1969	Hutch	5,6	14-55-00.04	146,140	135,79	1180,60	Yucca
71	29-10-1969	Calabash	5,7	22-01-51.04	146,150	135,82	1180,76	Yucca
72	17-12-1969	Grape A	5,5	15-00-00.04	146,112	135,94	1180,16	Az° max (+ № 76), Yucca
73	04-02-1970	Belen	5,6	17-00-00.07	146,075	135,91	1180,07	ближе, Үисса
74	23-03-1970	Shaper	5,5	23-05-00.04	146,109	135,91	1180,45	Yucca
75	26-05-1970	Flask Green	5,5	15-00-00.05	146,123	135,84	1180,53	мощнее, Үисса
76	14-10-1970	Tijeras	5,5	14-30-00.04	146,100	135,94	1180,20	Yucca
77	08-07-1971	Miniata	5,5	04-00-00.08	146,123	135,86	1180,18	Yucca
78	18-08-1971	Algodones	5,4	14-00-00.03	146,078	135,91	1180,31	Yucca
79	21-09-1972	Oscuro	5,7	15-30-00.19	146,101	135,90	1180,51	Yucca
80	26-04-1973	Storwort	5,6	17-15-00.17	146,133	135,84	1180,40	Yucca
81	21-06-1973	Potrillo	5,1	14-45-00.08	146,113	135,90	1180,42	Yucca
82	30-04-1975	Obar	5,2	15-00 -01.90	146,128	135,89	1180,57	USGS, DOE, Yucca
83	03-06-1975	Mizzen	5,7	14-40-00.11	146,113	135,89	1180,31	Yucca
84	20-12-1975	Chiberta	5,7	20-00-00.16	146,137	135,83	1180,42	Yucca
85	04-02-1976	Keelson	5,8	14-20-00.11	146,091	135,91	1180,26	Yucca
86	04-02-1976	Esrom	5,7	14-40-00.16	146,124	135,88	1180,35	Yucca
87	17-03-1976	Strait	5,8	14-45-00.09	146,120	135,86	1180,15	Yucca
88	27-07-1976	Billet	5,3	20-30-00.08	146,092	135,89	1180,47	Yucca
89	26-08-1976	Banon	5,3	14-30-00.17	146,129	135,81	1180,43	Yucca
90	28-12-1976	Rudder	5,5	18-00-00.08	146,118	135,88	1180,28	Yucca
91	27-04-1977	Bulkhead	5,4	15-00-00.08	146,116	135,90	1180,38	Yucca
92	25-05-1977	Crewline	5,3	17-00-00.08	146,110	135,88	1180,47	Yucca
93	04-08-1977	Strake	5,0	16-40-00.07	146,114	135,93	1180,31	Yucca
94	19-08-1977	Scantling	5,2	17-55-00.08	146,122	135,85	1180,52	Yucca
95	27-09-1977	Coulommiers	4,8	14-00-00.16	146,157	135,81	1180,62	Yucca
96	09-11-1977	Sandreef	5,7	22-00-00.08	146,088	135,88	1180,47	Yucca
97	14-12-1977	Faraliones	5.7	15-30-00.17	146,138	135,79	1180.93	Yucca
98	23-03-1978	Iceberg	5.6	16-30-00.20	146,116	135,86	1180.45	мощнее, Уисса
99	27-09-1978	Draughts	5.0	17-00-00.07	146.098	135.92	1180.51	Yucca
100	27-09-1978	Rummy	5.7	17-20-00.08	146.095	135.88	1180.55	Yucca
101	28-06-1979	Faiv	5,0	14-44-00 17	146.144	135.79	1180.33	Yucca
L		.,,,	,,-	1	- ,	,	,	

№№ п/п	Дата дд-мм-гг	Название испытания	m _b	Время в очаге чч-мм-сс	Δ°	Аz° от MIR	<i>t_{p1}</i> , c	Примечания
102	29-08-1979	Nessel	4,7	15-08-00.17	146,129	135,83	1180,69	Yucca
103	06-09-1979	Hearts	5,8	15-00-00.09	146,102	135,87	1180,57	Yucca
104	01-10-1981	Paliza	5,1	19-00-00.10	146,109	135,93	1180,55	Уисса
105	11-11-1981	Tilci	4,9	20-00- 00.09	146,087	135,86	1180,52	Yucca
106	12-11-1981	Rousanne	5,4	15-00-00.10	146,122	135,86	1180,35	Yucca
107	07-05-1982	Bouschet	5,7	18-17-00.11	146,086	135,89	1180,39	Yucca
108	05-08-1982	Atrisco	5,7	14-00-00.09	146,111	135,93	1180,42	Yucca
109	14-04-1983	Turquoise	5,7	19-05-00.12	146,090	135,89	1180,77	Yucca
110	16-12-1983	Romano	5,2	18-30-00.09	146,145	135,81	1180,36	Yucca
111	01-05-1984	Mundo	5,4	19-05-00.09	146,128	135,90	1180,51	Yucca
112	31-05-1984	Caprock	5,8	13-04-00.10	146,118	135,87	1180,50	Yucca
113	13-09-1984	Breton	5,0	14-00-00.00	146,096	135,85	1180,40	Yucca
114	05-12-1985	Kinibito	5,7	15-00-00.07	146,072	135,90	1180,44	Δ° min, Yucca
115	05-06-1986	Тајо	5,4	15-04-00.06	146,122	135,91	1180,44	Yucca
116	14-11-1986	Gascon	5,8	16-00-00.07	146,115	135,87	1180,90	Yucca
117	13-08-1987	Tahoka	5,9	14-00-00.09	146,079	135,90	1180,36	Yucca
118	23-10-1987	Borate	5,2	16-00-00.09	146,145	135,80	1180,84	Yucca
119	13-10-1988	Dalhart	5,9	14-00-00.08	146,104	135,87	1179,95	t _{p1} min, Yucca
120	18-10-1991	Lubbock	5,2	19-12-00.00	146,081	135,90	1180,40	Yucca

Примечания: *m_b* – магнитуда по объемным волнам; *t_{p1}* – время пробега по первому положительному экстремуму; *N* = 120 – общее число исследованных взрывов; *Δ°min-max*: 146,072 (№ 114) – 146,272 (№ 17); *t_{p1} min-max*: 1179,95 сек (№ 119) – 1181,14 сек (№ 01, 25); *Az° min-max*: 135,08 (№ 16) – 135,94 (№ 72, 76).

Рисунок 6. Локальный годограф волны РКІКР_{ВС} для трассы Невадский полигон – станция Мирный (NTS – MIR)

Рисунок 7. Линейный тренд времени пробега волны РКІКР_{ВС} в календарном времени для трассы Невадский полигон – станция Мирный (NTS – MIR)

Построена и анализировалась также зависимость времени пробега продольной волны $PKIKP_{BC}$ - t_{pl} , от магнитуды m_b (рисунок 8). Значения магнитуды по объемным волнам (m_b) зачастую предлагаются в качестве надежной энергетической меры источника. Поскольку глубина источника практически не влияет на магнитуду m_b , то оценки зависимости от времени прихода волны иногда очень успешно применяются для исторических событий, которые имеют важное значение для отслеживания дальнейших соблюдений договоров о контроле над вооружениями. Предварительная экспертиза закономерностей ($m_b - t_{pl}$) для различных трасс внедряется в практику исследований, что дает более строгие и тщательные статистические исследования совместно с линией годографа.

Рисунок 8. Зависимость t_{p1}=f(mь) времени пробега волны РКІКР_{ВС} от магнитуды ть для трассы Невадский полигон – станция Мирный (NTS – MIR)

РЕЗУЛЬТАТЫ АНАЛИЗА

В данном исследовании представлены итоговые значения параметров Невадских ядерных взрывов после тщательного анализа сейсмограмм и литературных данных. По приведенным в таблице значениям получены достоверные параметры взрывов, что, как следствие, ведет к повышению точности построений. В результате обработки и исследования записей 120 ядерных взрывов получены следующие эмпирические зависимости для трассы Невадский полигон – станция Мирный (NTS – MIR):

– локальный годограф волны $PKIKP_{BC} - t_{pl}(сек) = 782,0058 + (2,7272\pm0,1507) \cdot \Delta^{\circ}$, где Δ° – расстояние в градусах;

– линейный тренд времени пробега волны *PKIKP_{BC}* в календарном времени – $t_{pl}(\text{сек}) = 1165,7 + (0,0075\pm0,0031)$ ·T, где T – годы в календарном времени;

– - зависимость времени пробега волны $PKIKP_{BC}$ (t_{pl}) от магнитуды (m_b) – $f(t_{pl}, m_b) = 1180,344 + (0,0387\pm0,0617) \cdot m_b$, где t_{pl} – в секундах.

Линейный тренд времени пробега волны $PKIKP_{BC}$ в целом отражает ту же положительную тенденцию – увеличение времени пробега с годами, – что и на трассе Невадский полигон – Боровое (NTS – BRVK) [14]. Скорость изменения времени пробега волны $PKIKP_{BC}$ составила 8,97 мс/год за 24 года наблюдений, в то время как в [14] приведенная величина тренда продольной волны P - 7,26 мс/год за 12 лет. Наличие тренда может быть вызвано увеличением напряжений сжатия на границе внешнего и внутреннего ядра и мантии.

Дифференцирование функции зависимости пробега волны от магнитуды $f(t_{pl}, m_b)$ – рисунок 8, показало, что значение тангенса угла наклона регрессионной прямой составляет ±0,0387, т.е. чувствительность производной $f'(t_{pl}, m_b) \approx 0$. Это означает, что угол наклона прямой равен ~2,22°, что близко к горизонтали. Это позволяет сделать вывод, что время пробега и магнитуда взрыва – две независимые величины и судить о различии во временах пробега от магнитуды взрыва невозможно.

Заключение

Проведена систематизация данных для продольной волны *PKIKP*_{BC} по взрывам на Невадском испытательном полигоне из различных источников. Уточнены некоторые параметры взрывов после сравнительного анализа времён вступления продольной волны *PKIKP_{BC}* на геофизической обсерватории «Боровое» (BRVK), благодаря анализу сохранившихся сейсмограмм в архиве Геофизической службы РАН. Впервые построены локальные годографы и линейные тренды времени пробега волны PKIKP_{BC} на трассе Невадский полигон – станция Мирный (NTS – MIR) с точными значениями (*t*_{p1}).

Актуальность и уникальность результатов заключается в том, что для эпицентральных удалений ~146° получены новые данные о преломленной волне от искусственных источников. Для проверки гипотезы о связи вариаций времен пробега продольных волн от энергии взрыва дополнительно исследована зависимость времён вступления продольной волны *РКІКР_{ВС}* от магнитуды m_b . Сделан вывод о том, что зависимость времени пробега от увеличения магнитуды взрыва не проявляется. Полученные значения локальных годографов и линейных трендов с уточненной информацией являются на данный момент окончательными и дают основу для сравнений с результатами других измерений для взрывов на Невадском полигоне, например, на антарктической станции «Новолазаревская». Скорость изменения тренда времени пробега волны *РКІКР_{ВС}* составила 8,97 мс/год за 24 года, что ниже, чем приведенная величина скорости по той же трассе для тренда продольной волны Р (7,26 мс/год за 12 лет). Это свидетельствует о нелинейности пробега сейсмических волн в разных оболочках Земли. Полученные результаты могут быть использованы для создания моделей слоев Земли на границе внешнее – внутреннее ядро. Найденные зависимости можно применять для прогноза сейсмической опасности других сейсмических событий, схожих по энергетическим и пространственным параметрам с рассмотренными взрывами, а также осуществлять контроль за запрещенными тестированиями ядерного оружия. Построенный по взрывам годограф может быть основой сравнения с годографом, построенным по данным телесейсмических землетрясений.

Благодарность. Авторы выражают благодарность сотрудникам Института динамики геосфер РАН им. академика М.А. Садовского Л.Д. Годуновой и Т.В. Челюбеевой за постоянное внимание и помощь при выполнении данного исследования, а также признательность Геофизической службе РАН за предоставленные данные.

ЛИТЕРАТУРА

- 1. Нудельман, А.В. Советские экспедиции в Антарктику 1955–1959 гг. / А.В. Нудельман. М.: Изд-во АН СССР, 1959. 131 с.
- Нудельман, А.В. Советские экспедиции в Антарктику 1958–1960 гг. / А.В. Нудельман. М.: Изд-во АН СССР, 1960. 108 с.
- Ан, В.А. Предварительный отчёт сейсмической станции «Мирный» за 1959 год / В.А Ан. М.: Фонды ААНИИ, 1960. 50 с.
- 4. Эталонные сигналы частоты и времени. М.: Изд-во Стандартов, 1983. 30 с.

- 5. Адушкин, В.В. Структурные особенности внутреннего строения земли по результатам сейсмических наблюдений за подземными ядерными взрывами / В.В. Адушкин, В.А. Ан, В.М. Овчинников // Физика Земли, 2000. № 12. С. 3–26.
- 6. Ан, В.А. Подземный ядерный взрыв «инструмент» исследования динамики внутреннего строения Земли / В.А. Ан, Л.Д. Годунова, П.Б. Каазик, Т.В. Челюбеева // Вестник НЯЦ РК, 2006. Вып. 2. С. 27–32.
- Краснощеков, Д. Н. О скорости поперечных волн в верхней части внутреннего ядра Земли / Д. Н. Краснощеков, В. М. Овчинников, О. А. Усольцева // Доклады академии наук, 2019. - Т. 488, № 4. – С. 434–438. https://doi.org/10.31857/S0869-56524884434-438.
- Yang, Y. Origin of temporal changes of inner-core seismic waves / Y. Yang, X. Song // Earth and Planetary Science Letters, 2020. – Vol. 541. – 116267. https://doi.org/10.1016/j.epsl.2020.116267.
- Springer, D.I. Seismic source summary for all U. S. below-surface nuclear explosions / D.I. Springer, G.F. Pawloski, J.L. Ricca, R.F. Rohrer, D.K. Smith // Bull. Seism. Soc. Am., 2002. – V. 92, No. 5. – P. 1808–1840.
- 10. Adushkin, V.V. Teleseismic Monitoring of Underground Nuclear Explosions at the Nevada Test Site from Borovoye,
- Kazakhstan / V.V. Adushkin, V.A. An // Science and Global Security, 1993. Vol. 3. P. 289-309.
- 11. United States Nuclear Tests July 1945 through September 1992. U.S. Department of Energy Nevada Operation Office. DOE/NV-209-REV 15. December 2000.
- 12. Springer, D.L. Seismic Source Summary for U.S. Underground Nuclear Explosions, 1961–1970 / D.L. Springer, R.L. Kinnaman // Bul. Seism. Soc. Am., 1971. Vol. 61, No. 4. P. 1073–1098.
- 13. Springer, D.L. Seismic Source Summary for U.S. Underground Nuclear Explosions, 1971–1973 / D.L. Springer, R.L. Kinnaman // Bul. Seism. Soc. Am., 1975. Vol. 65, No. 2. P. 343–349.
- 14. Ан, В.А. Изменения времени пробега продольной сейсмической волны в календарном времени / Н.Н. Михайлова, Л.Д. Годунова, П.Б. Каазик, В.М. Овчинников // Вестник НЯЦ РК, 2005. Вып. 2. С. 41–45.

НЕВАДА – «МИРНЫЙ» СТАНЦИЯСЫ (АНТАРКТИДА) ТРАССАСЫНДАҒЫ РКІКР_{ВС}

¹⁾ К.С. Непеина, ²⁾ В.А. Ан

¹⁾ Бішкек қаласындағы РҒА ғылыми станциясы, Бішкек, Қырғызстан ²⁾ Садовский РҒА Геосфералар динамикасы институты, Мәскеу, Ресей

Невада полигоны (NTS) – «Мирный» (MIR) станциясы трассасында жергілікті годографтар мен $PKIKP_{BC}$ толқыны жолы уақытының сызықтық трендтері келтірілген. Бұл зерттеулер үшін РҒА Геофизикалық қызметімен (Обнинск к., Мәскеу облысы) ұсынылған Антарктидағы «Мирный» станциясының сейсмограммалары жүйелендірілген және өңделген. 1966 жылғы 13 мамыр – 1991 жылғы 18 қазаң аралығы кезеңінде Кирноса (CBKM) сейсмографымен алынған 120 сейсмограммалар пайданылған: Раһиtе және Yucca Heвада полигонындарында (NTS) жерастылық ядролық жарылыстар өткізілген кезде, олардың әрбір алаңына 60 сейсмограмма жасалды. Жылдар өткен сайын Невада полигоны трассасындағы сияқты Бурабай [14] жол уақытының көбеюі белгілі болды. m_b магнитудасынан $PKIKP_{BC}$ бойлық толқынының шығу уақытының тәуелділігі алынды. Алынған деректерді, Невада полигоны жарылыстарының $PKIKP_{BC}$ толқынын зерттеу нәтижелерін басқа станциялардан алынған деректермен салыстыру үшін пайдалануға болады, мысалы «Новолазаревская» антарктикалық станциясында.

PKIKPBC ON THE TRAVELPATH NEVADA – "MIRNYY" STATION (ANTARCTICA)

¹⁾ K.S. Nepeina, ²⁾ V.A. An

¹⁾ Research Station RAS in Bishkek, Bishkek, Kyrgyzstan

²⁾ Sadovsky Institute of Dynamics of Geospheres of the Russian Academy of Sciences, Moscow, Russia

The Geophysical Service of the Russian Academy of Sciences (Obninsk, Moscow Region) made it possible to process seismograms of "Mirnyy" station in Antarctica. Seismograms for the period 1961–1991 were viewed, when underground nuclear explosions were conducted at the Nevada Test Site of the United States. To calculate and construct a local travel time curve and a linear trend of the *PKIKP_{BC}* body wave travel time on the Nevada Test Site (NTS) – "Mirnyy" seismic station (MIR), 120 seismograms from Kirnos seismograph (SVKM) were selected for the period May 13, 1966 – October 18, 1991: 60 for each site Pahute and Yucca of the Nevada Test Site (NTS). The article presents local travel-time curves and linear trends of the *PKIKP_{BC}* wave on the travelpath NTS – MIR. Increase in time travel with years as in travelpaths Nevada Test Site – Borovoye [14]. Dependency of arrival times of the *PKIKP_{BC}* wave on m_b magnitude was detected. The obtained data can be used for comparison of results of *PKIKP_{BC}* wave study from the Nevada Test Site on other stations, for examples, at "Novolazarevskaya" Antarctic station.