ВЛИЯНИЕ ФЛЮЕНСА ОБЛУЧЕНИЯ ВЫСОКОЭНЕРГЕТИЧЕСКИМИ ИОНАМИ КРИПТОНА НА УПРОЧНЕНИЕ СПЛАВА Ni-Ti

¹⁾ Сатпаев Д.А., ¹⁾ Полтавцева В.П., ²⁾ Партыка Я.

¹⁾ Институт ядерной физики МЭ РК, Алматы, Казахстан ²⁾ Люблинский технический университет, Люблин, Польша

В работе экспериментально изучены закономерности изменения микротвердости и фазового состава сплава Ni-Ti в аустенитном структурно-фазовом состоянии в зависимости от флюенса облучения ионами $_{84}$ Kr¹⁵⁺ с энергией 147 МэВ. Установлено, что упрочнение с максимумом в области проективного пробега R_p и в запробежной области (h > R_p) увеличивается с ростом флюенса облучения вплоть до 5·10¹⁹ ион/м². Показано, что причиной упрочнения является образование радиационно-введенных упрочняемых дефектных структур. В процессе облучения до максимального флюенса также характерно формирование наноразмерных частиц мартенситной R-фазы и уменьшение содержания фазы NiTi со структурой B2 вследствие радиационных воздействий.

Введение

Одним из перспективных направлений формирования многослойной модифицированной структуры сплавов на основе никелида титана с эффектом памяти формы является облучение тяжелыми ионами инертных газов МэВ – энергии и с максимальными значениями заряда ионов и интенсивности тока пучка [1-4]. В работах [1, 3-5] показано, что изменение структуры и физико-механических свойств модифицированных слоев зависит от фазового состава сплава Ni-Ti и параметров облучения, таких как M, Z, E, J, Фt, Тобл. Установлено [1, 3, 5], что упрочнение поверхности сплава Ni-Ti в однофазном состоянии и его разупрочнение для двухфазного состояния после облучения ионами 40 Ar⁸⁺ и 84 Kr¹⁵⁺ при сравнимых параметрах А/Z, Е/нукл, Фt, J, T связаны с преобладающим вкладом накопления наноструктурных дефектов и процессами распыления/ионной полировки поверхности, радиационно-стимулированным превращением В19 →В2 соответственно. Однако независимо от фазового состава сплава Ni-Ti имеет место упрочнение в области проективного пробега R_p и в запробежной области (h > R_p). При этом модифицированные сплавы Ni-Ti проявляют способность к проявлению эффекта памяти формы в виде мартенситных гистерезисов с повышенными температурными параметрами [4].

Целью настоящего исследования является изучение особенностей влияния флюенса облучения ионами криптона с энергией 147 МэВ на упрочнение и структуру модифицированных сплавов Ni-Ti с эффектом памяти формы в аустенитном структурнофазовом состоянии.

Материал и методы исследования

Исследовали сплав Ni-Ti в аустенитном структурно-фазовом состоянии – однофазный сплав Ni-Ti со структурой B2 (аустенит). Образцы данного сплава получали в результате отжига в вакуумной (~10⁻⁴ Па) печи в течение 1 ч при 230±3 °C образцов полупромышленного двухфазного сплава Ni-Ti состава 53,46 вес.% Ni – 46,54 вес.% Ti [1]. Двухфазный сплав Ni-Ti состоял преимущественно из NiTi со структурой B2 (аустенит, ОЦК - решетка), NiTi со структурой B19 (мартенсит, моноклинная решетка) и незначительного содержания Ti, избыточного Ni в виде твердого раствора и технологических частиц, близких по составу к Ti₂Ni(C) [2-4]. Перед отжигом образцы двухфазного сплава Ni-Ti вырезали электроискровой резкой из массивной прокованной пластины поперек направления прокатки. Поверхность образцов подвергали механической шлифовке и последующей полировке на сукне с использованием пасты ГОИ. Качество поверхности оценивали методом оптической металлографии.

Облучение тяжелыми ионами ${}_{84}$ Kr¹⁵⁺ с энергией 147 МэВ (1,75 МэВ/нукл.) до флюенсов 1·10¹⁸, 1·10¹⁹ и 5·10¹⁹ ион/м² осуществляли на ускорителе ДЦ-60 (Астана, Казахстан) при температуре ≤ 100 °С. Площадь радиационной обработки составляла ~1·10⁻⁴ м². Проективный пробег ионов ${}_{84}$ Kr¹⁵⁺ R_p = 10,1 мкм.

Фазовый состав сплава Ni-Ti исследовали методом рентгенострутурного анализа (PCA) с использованием дифрактометра D8 ADVANCE в геометрии расходящегося пучка и излучения рентгеновской трубки с Cu – анодом. Расчетная глубина PCA-анализа > 8 мкм, точность анализа 3,4 %. Степень упрочнения оценивали на основе результатов измерений микротвердости по Виккерсу на микротвердомере «ПМТ-3М» (Россия) в зависимости от приложенной нагрузки в диапазоне 0,098±4,9 Н. Точность измерений микротвердости 3–4 %. Толщина исследуемых слоев при каждой приложенной нагрузке определяется глубиной отпечатка.

Экспериментальные результаты и их обсуждение

Рентгеноструктурный анализ

Как видно из рисунка 1, на дифрактограммах однофазного сплава Ni-Ti, независимо от флюенса облучения, присутствуют в основном рентгеновские линии отражения, принадлежащие фазе NiTi со структурой B2 (аустенит). Однако по сравнению с необлученным однофазным сплавом Ni-Ti (рисунок 1, а) интенсивность основной рентгеновской линии отражения (110) увеличивается не пропорционально с ростом флюенса облучения. Так, интенсивность данной линии отражения увеличивается в 1,5 (рисунок 1, б), 1,6 (рисунок 1, в) и 1,15 раз (рисунок 1, г) после облучения до флюенсов $1 \cdot 10^{18}$, $1 \cdot 10^{19}$ и $5 \cdot 10^{19}$ ион/м² соответственно.

Рисунок 1. Дифрактограммы сплава Ni-Ti до и после облучения при различных флюенсах

Кроме того, обнаружено расщепление рентгеновской линии отражения (110) в случае необлученного однофазного сплава Ni-Ti и после облучения до максимального флюенса (рисунок 2). Известно [6, 7], что расщепление данной линии отражения является одним из рентгеновских признаков, свидетельствующих о формировании наноразмерных частиц мартенситной R-фазы вследствие радиационных или термических воздействий. На основании полученных данных можно заключить следующее. Образование мартенситной R-фазы происходит в процессе получения однофазного сплава Ni-Ti как следствие термического воздействия при отжиге двухфазного сплава. В результате воздействия высокоэнергетических ионов криптона содержание мартенситной Rфазы уменьшается ниже чувствительности метода рентгеноструктурного анализа или исчезает совсем (рисунок 2, б) и вновь восстанавливается в процессе облучения до максимального флюенса (рисунок 2, в).

Рисунок 2. Фрагменты дифрактограмм линии (110) фазы B2 до и после облучения до различных флюенсов

Результаты расчета по программам RTP и WinFit параметров PCA – параметра кристаллической решетки *a*, размера кристаллитов $R_{(110)}$, деформации решетки ε , содержания S₍₁₁₀₎ и уширения линии $B_{(110)}$ фазы NiTi со структурой B2 необлученного и облученного до различных флюенсов однофазного сплава Ni-Ti приведены в таблице. Отметим, во-первых, что рассчитанные параметры PCA изменяются не пропорционально с ростом флюенса облучения. Вовторых, по сравнению с необлученным однофазным сплавом Ni-Ti в результате воздействия высокоэнергетических ионов криптона наблюдается увеличение параметров *a*, $R_{(110)}$ и уменьшение параметров ε , S₍₁₁₀₎

Увеличение параметра кристаллической решетки облученного однофазного сплава Ni-Ti свидетельствует о ее расширении, связанном в основном с образованием радиационно-введенных дефектов (см. таблицу). Причем максимальное расширение решетки происходит в результате облучения до флюенса $1 \cdot 10^{19}$ ион/м², а минимальное в случае максимально-го флюенса. Тогда как степень уменьшения содер-

жания фазы NiTi со структурой B2 составляет 1,7, 1,25 и 1,4, а степень укрупнения ее кристаллитов 1,8, 1,2 и 1,4 после облучения до флюенсов $1 \cdot 10^{18}$, $1 \cdot 10^{19}$ и $5 \cdot 10^{19}$ ион/м² соответственно. Следовательно, можно сделать вывод, что основной вклад в уменьшение содержания фазы NiTi со структурой B2 при облучении высокоэнергетическими ионами криптона обусловлен процессом укрупнения ее кристаллитов.

Таблица. Параме	етры РСА спла	ива Ni-Ti до и после
облучені	ия до различны:	х флюенсов

Фt, ион/м²	а, нм	R ₍₁₁₀₎ , нм	ε, 10⁻⁵, отн. ед.	S ₍₁₁₀₎ , FWHM	Β ₍₁₁₀₎ , 2θ
Необл.	0,30126	18,5	457	0,452	2,575
1·10 ¹⁸	0,30139	32,8	241	0,261	1,916
1·10 ¹⁹	0,30158	22,7	343	0,362	1,988
5·10 ¹⁹	0,30134	25,9	305	0,323	1,994

Отметим, что ранее [8] обнаружен эффект измельчения кристаллитов фазы NiTi со структурой B2 и кристаллитов мартенситной фазы NiTi со структурой B19['] под воздействием высокоэнергетических ионов криптона в двухфазном сплаве Ni-Ti. При этом наблюдался рост деформация ОЦК – кристаллической решетки и ее уменьшение для моноклинной кристаллической решетки. В работе [8] также показано, что уширение/сужение рентгеновских линий основных фаз двухфазного сплава Ni-Ti является следствием конкуренции двух радиационно-обусловленных процессов – деформация кристаллической решетки и измельчение/укрупнение кристаллитов фаз.

В случае однофазного сплава Ni-Ti, как видно из таблицы, сужение рентгеновской линии $B_{(110)}$ сопровождается укрупнением кристаллитов фазы NiTi со структурой B2 и уменьшением деформации ОЦК – кристаллической решетки, степень которых зависит от флюенса облучения. Однако степень сужения рентгеновской линии $B_{(110)}$ практически одинакова – 1,29–1·10¹⁸; 1,29–1·10¹⁹ и 1,34–5·10¹⁹ ион/м². На основе анализа расчетных данных (таблица) показано, что для более низких флюенсов облучения вклад в сужение рентгеновской линии $B_{(110)}$ обусловлен конкуренцией $R_{макс}$ и $\varepsilon_{мин}$ или $R_{мин}$ и $\varepsilon_{макс}$, тогда как для максимального флюенса – конкуренцией R_{cp} и ε_{cp} .

Измерения микротвердости

Результаты измерений микротвердости сплава Ni-Ti в необлученном состоянии и после облучения до различных флюенсов приведены на рисунке 3. Видно, что независимо от флюенса облучения наблюдается упрочнение сплава Ni-Ti как в области проективного пробега R_p (приповерхностный слой), так в запробежной области ($h > R_p$). При этом в слое толщиной до ~5 мкм характерно упрочнение с мак-

симумом, степень которого увеличивается в 1,4; 1,6 и 2,5 раза после облучения до флюенсов $1 \cdot 10^{18}$, $1 \cdot 10^{19}$ и $5 \cdot 10^{19}$ ион/м² соответственно по сравнению с необлученным сплавом Ni-Ti. Кроме того, с увеличением флюенса облучения происходит сдвиг максимума в сторону облученной поверхности.

Далее отметим, что на глубинах \geq 5,5 мкм степень упрочнения уменьшается при всех флюенсах облучения, тем не менее, в конце проективного пробега R_p и в запробежной области сплав Ni-Ti все еще остается упрочненным (рисунок 3). Однако увеличение степени упрочнения в этой области не происходит в случае максимального флюенса.

▼ – необлученный, • – 1·10¹⁸, **=** – 1·10¹⁹ и ▲ – 5·10¹⁹ ион/м²

Рисунок 3. Изменение микротвердости от глубины слоев в зависимости от флюенса облучения

Таким образом, на основе сравнения полученных данных РСА и микротвердости можно сделать вывод о том, что эффект упрочнения сплава Ni-Ti обусловлен образованием радиационно-введенных упрочняемых дефектных структур.

Заключение

В сплаве Ni-Ti в результате облучения высокоэнергетическими ионами криптона до различных флюенсов наблюдаются следующие эффекты:

– Упрочнения приповерхностного слоя и в запробежной области сплава Ni-Ti независимо от флюенса облучения. Показано, что данный эффект связан с образованием радиационно-введенных упрочняющих дефектных структур.

 Формирования наноразмерных частиц мартенситной R-фазы NiTi и уменьшения содержания фазы NiTi со структурой B2 вследствие радиационных воздействий.

 Не пропорциональной зависимости микротвердости и параметров рентгеноструктурного анализа от флюенса облучения.

Литература

- Poltavtseva V. Peculiarities of structure and hardening of Ni-Ti alloy surface layers formed by ₈₄Kr¹⁵⁺ ions irradiation at 147 MeV energy at high temperatures / V. Poltavtseva, A. Larionove, D. Satpaev // IOP Conf. Series: Materials Science and Engineering. – 2017. – V.168. – P.012032.
- Полтавцева, В.П. Влияние термического отжига на структурно-фазовые изменения в сплаве Ni-Ti, имплантированном ионами криптона / В.П. Полтавцева, С.Б. Кислицин, С.А. Гынгазов // Известия ВУЗов. Физика. – 2016. – Т.59, №2. – С.3-9.
- Poltavtseva, V. Radiation hardening of Ni-Ti alloy under implantation of inert gases heavy ions / V. Poltavtseva, A. Larionove, D. Satpaev, M. Gyngazova // IOP Conf. Series: Materials Science and Engineering. – 2016. – V.110. – P.012011.
- Poltavtseva, V.P. Feature of radiation damage of Ni-Ti alloy under exposure to heavy ions of gaseous elements / V.P. Poltavtseva, S.B. Kislitsin, D.A. Satpaev, T.S. Mylnikova, A.V. Chernyavskii // IOP Conf. Series: Materials Science and Engineering. – 2015. – V.81. – P.01234.
- Полтавцева, В.П. Особенности влияния флюенса облучения ионами ₈₄Kr¹⁵⁺ на структуру и свойства сплава Ni-Ti с эффектом памяти формы / В.П. Полтавцева., А.С. Ларионов, Д.А. Сатпаев // Материалы XII Межд. конф. по взаимодействию излучений с твердым телом. – Минск: Изд. Центр БГУ, 2017. – С.274-276.
- Полтавцева, В.П. Фазообразование в сплаве Ni-Ti при последовательном воздействии ионов криптона и сильноточного электронного пучка / В.П. Полтавцева, Н.Н.Коваль, С.Б. Кислицин, В.И. Антонюк // Материалы X Межд. конф. По взаимодействию излучений с твердым телом. – Минск: Изд. Центр БГУ, 2013. – C.211-213.
- Лотков, А.И. Влияние старения на температуру начала мартенситного превращения в интерметаллиде NiTi / А.И. Лотков, В.Н. Гришков, С.В. Анохин, А.И. Кузнецов // Известия вузов. Физика. – 1982. – №10. – С.11-16.
- Полтавцева В.П. Фазовые превращения в сплаве Ni-Ti, имплантированном тяжелыми ионами криптона / В.П. Полтавцева, В.И. Антонюк, В.В. Киреев // Труды 8 Межд. конф. по Фундаментальному и прикладному материаловедению. – Барнаул: Изд-во АлГТУ, 2011. – С.65-69.

Ni-Ti қорытпасының беріктелуіне жоғары энергиялы криптон иондарымен сәулелендіру флюенсінің ықпалы

¹⁾ Д.А. Сатпаев, ¹⁾ В.П. Полтавцева, ²⁾ Я. Партыка

¹⁾ ҚР ЭМ Ядролық физика институты, Алматы, Қазақстан ²⁾ Люблин техникалық университеті, Люблин, Польша

Жұмыста энергиясы 147 МэВ болатын $_{84}$ Кr¹⁵⁺ иондарымен сәулелендіру флюенсіне байланысты аустениттік құрылымдық-фазалық күйдегі Ni-Ti қорытпасының микроқаттылығы мен фазалық құрамының өзгеру заңдылықтары экспериментті түрде зерделенді. Сәулелендіру флюенсінің өсуімен бірге проективтік жүгіру жолы (R_p) және жүгіру жолынан тыс (h > R_p) аймақтарында максимум беріктелу 5·10¹⁹ ион/м² мәніне дейін ұлғаятыны анықталды. Беріктелу себебі радиациялық-енгізілген беріктелетін ақаулық құрылымдардың түзілуі екендігі көрсетілді. Максималды флюенске дейін сәулелендіру процесі барысында мартенситтік R-фазаның нанокөлемді бөлшектері қалыптасады және радиациялық әсерлердің салдарынан B2 құрылымды NiTi фазасының мөлшері азаяды.

EFFECT OF THE FLUENCE OF HIGH-ENERGY CRYPTON IONS IRRADIATION ON Ni-TI ALLOY HARDENING

¹⁾ D.A. Satpaev, ¹⁾ V.P. Poltavtseva, ²⁾ J. Partyka

¹⁾ Institute of Nuclear Physics ME RK, Almaty, Kazakhstan ²⁾ Lublin University of Technology, Lublin, Poland

The patterns of changes in microhardness and phase composition of Ni-Ti alloy in the austenitic structural-phase state have been experimentally studied depending on the fluence of irradiation with ${}_{84}$ Kr¹⁵⁺ ions with the energy of 147 MeV. It was established that hardening with a maximum in the range of the projected range R_p and in the out-of-range region (h > R_p) increases with the growth of the irradiation fluence up to $5 \cdot 10^{19}$ ion/m². It was shown that the reason of hardening is formation of the radiation-introduced hardened defective structures. The formation of nano-sized particles of the martensitic R-phase and the decrease in NiTi phase content with the B2 structure are also characteristic in the process of irradiation up to maximum fluence due to radiation effects.