Вестник НЯЦ РК выпуск 2, июнь 2018

УДК 550.34.03

СЕТИ СЕЙСМИЧЕСКИХ НАБЛЮДЕНИЙ В ЦЕНТРАЛЬНОЙ АЗИИ

Непеина К.С.

Научная станция Российской академии наук в г. Бишкеке, Бишкек, Кыргызстан

Описаны системы мониторинга сейсмичности в Центральной Азии, приведены некоторые характеристики и история создания станций, входящих в национальные сейсмические сети. Представлен обзор стационарных и временных систем регистрации землетрясений и ядерных взрывов по состоянию на 2018 г. и их использование при решении различных задач и в исследовательских проектах.

Начиная с советских времен исследование региона Центральной Азии представляет особый интерес. Геодинамическая обстановка в исследуемом районе Центральной Азии достаточно сложная и уникальная. Складчатые структуры, такие как Памир, Тянь-Шань, Алтай, Саяны, Гиндукуш, Предгорья Тибета и Копетдага, до сих пор находятся в активном состоянии, движения этих структур сопровождаются землетрясениями. Физические расстояния (высота, длина) между точками GPS наблюдений изменяются, что подтверждает тектоническую активность региона. В данных условиях особый интерес представляет изучение геофизических параметров территорий как отдельных горных районов, так и горного массива в целом.

Мониторинг сейсмичности в Центральной Азии проводится несколькими центрами. Основное их разделение проходит по государственной принадлежности или ответственности определенной организации, ведущей соответствующие научные исследования в области сейсмологии и предотвращения чрезвычайных ситуаций.

В открытом отчете [1] уже было дано описание сейсмических сетей на территории постсоветского пространства в Центрально-Азиатских республиках. Однако за последние годы произошел ряд изменений: от некоторых станций с сильно зашумленными данными было решено отказаться; на части систем в результате модернизации изменены конфигурация и оборудование; появились новые наблюдательные пункты. Так, начиная с 2008 г., с участием Геофизического центра исследований Земли в Потсдаме (GFZ Potsdam) были созданы межгосударственные сети наблюдений в дополнение к существующим национальным региональным сетям Казахстана, Кыргызстана, Таджикистана, Туркменистана, Узбекистана. Повсеместно в различных установках используется определенный тип аппаратуры: одно- или трехкомпонентные наземные или скважинные сейсмометры. Благодаря использованию трехкомпонентных сейсмометров обеспечена возможность оценки направлений прихода волнового фронта, поляризационного анализа и селекции определенных направлений колебаний (вертикального или одного из горизонтальных) [2]. Таким образом, обзор, приводимый в данной работе, является актуализацией состояния систем мониторинга на 2018 г. в странах Центрально Азии - Казахстане, Кыргызстане, Таджикистане, Туркменистане, Узбекистане. Список действующих сейсмических групп для справки по этим странам доступен по ссылке www.fdsn.org [3].

СЕТИ СЕЙСМИЧЕСКОГО МОНИТОРИНГА НА ТЕРРИТОРИИ ЦЕНТРАЛЬНОЙ АЗИИ

В Казахстане существуют две основные организации, занимающиеся обработкой, хранением и обеспечением бесперебойной работы сейсмических сетей:

1) Казахстанский национальный центр данных (КНЦД), входящий в состав Республиканского государственного предприятия «Институт геофизических исследований» Министерства энергетики РК (РГП ИГИ);

2) Сейсмологическая опытно-методическая экспедиция Комитета науки Министерства образования и науки РК (с 2013 г. – ТОО «СОМЭ» АО «Национальный центр сейсмологических наблюдений и исследований»).

В состав сети, работающей под оперативным управлением РГП ИГИ, входят станции [4], созданные в советское время и модернизированные после 1994 г., а также станции, построенные после 2000 г., 5 из которых входят в Международную систему мониторинга, создаваемую Организацией по Договору о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) – таблица 1. Инструментальные данные с использованием каналов связи, в том числе спутниковых, передаются в режиме реального времени в КНЦД, в Международные и Национальные центры данных [5]. В составе сети РГП ИГИ имеются группы с уникальной конфигурацией – «Курчатов-Крест» и Большебазовая сейсмическая группа Боровое с «Треугольником» (станции Восточное, Чкалово, Зеренда).

Под контролем ТОО «СОМЭ» находится сейсмотелеметрическая система «Вулкан» [6], которая состоит из сейсмотелеметрических станций (таблица 2) и центра обработки, расположенного на Центральной сейсмической обсерватории Алматы (ЦСО «Алматы»). Информация со всех станций в реальном времени передается на ЦСО «Алматы».

В *Таджикистане* в состав сети входит 8 станций, которые расположены как в горных условиях, так и на равнинных участках, и оборудованы широкополосными сейсмометрами СМ3-КВ (таблица 3, рисунок 1).

СЕТИ СЕЙСМИЧЕСКИХ НАБЛЮДЕНИЙ В ЦЕНТРАЛЬНОЙ АЗИИ

Таблица 1. Станции, входящие в сейсмическую сеть РГП ИГИ (Казахстан) [4]

Nº	Ста	нция	Тип	Коорді	инаты	Глубина	
Mō	Название	Код	ТИП	LAT	LON	Н, м	
1	Р523-Маканчи	MKAR	группа	46,7937	82,2903	615	
2	Маканчи	MAKZ (IRIS)	3-х комп.	46,8080	81,9770	600	
3	Восточное	VOS	«треугольник»	52,7232	70,9797	300	
4	Чкалово	СНК	«треугольник»	53,6762	70,6152	120	
5	Зеренда	ZRN	«треугольник»	52,9510	69,0043	380	
6	Подгорное	PDGK	3-х комп.	43,3275	79,4850	1277	
7	Каратау	KKAR	группа	43,1051	70,5067	525	
8	Акбулак	ABKAR	группа	49,2558	59,9431	362	
9	AS058-Курчатов	KURK	группа	50,72	78,62		
10	Боровое	BRVK (IRIS)	3-х комп.	53,0578	70,2827	330	
11	AS057-Боровое	BVAR-	»	53,0240	70,3880	361	
12	AS059-Актюбинск	AKTO-	3-х комп.	50,40	58,00	379	
13	Курчатов	KURK (IRIS)	3-х комп.	50,7154	78,6202	184	
14	Ортау	OTUK	3-х комп.	48,24433	72,3376	750	
15	кнцд	KNDC	3-х комп.	43,2172	76,9658	900	

Таблица 2. Станции, входящие в сейсмическую сеть ТОО «СОМЭ» (Казахстан) [6]

No		Коорд	инаты	Высота	No		Коорд	инаты	Высота
Nº	Название	LAT	LON	Н, м	Nº	Название	LAT	LON	Н, м
1	Алматы	43,209	76,915	920	20	Семипалатинск	50,408	80,250	210
2	Байтал	45,041	74,046	341	21	Талдыкорган	45,002	78,406	540
3	Березники	49,982	72,678	497	22	Тянь-Шань	43,037	76,947	3480
4	Бесмойнак	43,108	75,669	1624	23	Узынбулак	43,147	79,022	1560
5	Боролдай	42,787	69,683	510	24	Чимкент	42,331	69,601	570
6	Джамбул	42,891	71,331	780	25	Чушкалы	43,857	77,002	510
7	Джаркент	44,332	79,790	1080	26	Шалкоде	43,157	79,883	2115
8	Жабаглы	42,423	75,544	1470	27	Южная	42,147	70,031	1200
9	Жинишке	43,168	78,435	1132	28	Архарлы	44,211	76,613	980
10	Зайсан	47,450	84,400	550	29	Балдыбастау	44,091	78,469	1407
11	Капал-Арасан	45,285	79,357	900	30	Дегерес	43,244	75,772	1340
12	Кастек	43,043	75,966	1520	31	Известковый	43,036	76,613	1720
13	Кокпек	43,442	78,673	1137	32	Карабастау	43,696	75,675	915
14	Курам	43,487	78,168	840	33	Каратобе	43,730	76,490	760
15	Курты	43,893	76,340	540	34	Кетмень	43,461	80,340	1430
16	Майтюбе	43,130	76,429	1050	35	Коныролен	44,359	79,179	1630
17	Медео	43,163	77,048	1600	36	Котырбулак	43,230	77,111	1600
18	Мерке	42,745	73,226	1160	37	Курам	43,486	78,166	840
19	Саты	43,059	78,046	1400	38	Тянь-Шань	43,043	76,943	3350

Таблица 3. Список станций, входящих в сейсмическую сеть Таджикистана (по состоянию на 2017 г.) [7]

Nº	Станция		Координаты		Nº	Станция		Координаты	
INE	Название	Код	LAT	LON	IN≌	Название	Код	LAT	LON
1	Чуянгарон	CHCR	38,656898	69,158203	5	Гежан	GEZN	39,283298	67,715401
2	Чорух Дайрон	CHRDR	40,3867	69,670998	6	Игрон	IGRN	38,220299	69,326599
3	Душанбе	DUSH	38,568802	68,780998	7	Манем	MANEM	37,529999	71,660004
4	Гарм	GARM	39,00	70,316002	8	Шаартуз	SHAA	37,562	68,122803

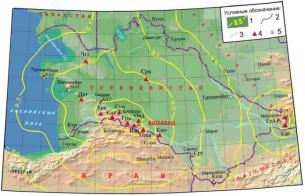


Рисунок 1. Схема расположения станций сейсмической сети Таджикистана [7]

В *Туркменистане* имеется 24 станции, которые расположены в основном вдоль хребта Копетдаг (таблица 4, рисунок 2).

Узбекистан имеет сеть из 14 станций, расположенных по всей территории страны (таблица 5, рисунок 3), которая находится под оперативным управлением Института сейсмологии Академии наук Республики Узбекистан. 6 станций напрямую подключены к интернет-каналам, к FTP-серверу в Центральной сейсмической обсерватории «Ташкент». 8 станций отправляют данные о событиях по комму-

тируемому соединению. Две точки из них оснащены широкополосными трехкомпонентными датчиками STS-1, акселерометрами SLJ-100В и 24-битными регистраторами данных EDAS-24. Кроме того, несколько станций оснащены трехкомпонентными короткопериодическими датчиками. JCV-104V и 16-битными регистраторами данных EDAS-3. На всех других станциях используются однокомпонентные датчики CM3-КВ российского производства и 16-битный регистратор данных Webtronics.

1 – изолиния Kmin, 2 – гос. граница, 3 – река, 4 – сейсмическая станция, 5 - город [8]

Рисунок 2. Схема расположения станций сейсмической сети Туркменистана и представительности регистрации землетрясений в 2008 г.

1	Габлица 4.	Список станций,	входящих в се	<i>г</i> йсмическую сеть	Туркменистана	(no c	состоянию на	201	/ г.)	[8]	

Nº	Название	код	LAT	LON		Название	код	LAT	LON
1	Ашхабад	Ashgabad	37,96	58,37	13	Кызыл-Арават	Kyzil-Aravat	38,97	56,28
2	Ванновская	Vannovskaya	37,95	58,11	14	Туркменбаши	Turkmen-Bashi (KRE)	40,04	53
3	Гаудань	Gaudan	37,67	58,42	15	Кум-Даг	Kum-Dag	39,2	54,66
4	Гаурдак	Gaurdak	37,8	66,05	16	Кушка	Kushka	35,27	62,31
5	Гермаб	Germab	38,01	57,75	17	Маныш	Manysh	37,72	58,61
6	Гуаурс	Gyaurs	37,93	58,91	18	Небит-Даг	Nebit-Dag	39,51	54,39
7	Дан-Ата	Dan-Ata	39,07	55,17	19	Овадан-Тепе	Ovadan-Tepe	38,11	58,36
8	Кара-Кала	Kara-Kala	38,44	56,27	20	Серный	Semiy	39,99	58,83
9	Карлык	Karlyuk	37,56	66,43	21	Серахс	Serakhs	36,53	61,21
10	Каушут	Kaushut	37,46	59,49	22	Сунча	Suncha	38,5	57,3
11	Куджитанг	Kugitang	37,91	66,48	23	Чагыл	Chagyl	40,78	55,38
12	Кызыл-Атрек	Kyzil-Atrek	37,68	54,77	24	Чарджоу	Chardzhou	39,08	63,53

Таблица 5. Список станций, входящих в сейсмическую сеть Узбекистана [9]

Nº	Станция Координ		инаты	Высота №		Ста	нция	Коорд	Координаты		
IN≥	Название	Код	LAT	LON	Н, м	Mā	Название	Код	LAT	LON	Н, м
1	Агалык	AGL	39,5171	66,8803	871,0	8	Тамдыбулак	TMD	41,7500	64,6400	273,0
2	Андижан	ANR	40,7550	72,3600	494,0	9	Газли	Gazly	40,1294	63,4472	186,0
3	Фергана	FRG	40,3743	71,7841	591,0	10	Чимион	Chimion	40,2688	71,5225	664,0
4	Наманган	NAM	40,9911	71,6587	432,0	11	Мингтут	Mingtut	40,4658	70,9748	473,0
5	Нурата	NUT	40,5537	65,6788	524,0	12	Ксива	Xiva	41,3827	60,3506	101,0
6	Самарканд	SAM	39,6733	66,9900	704,0	13	Шахимардан	Shahimardan	39,9540	71,7386	1822,0
7	Ташкент	TAS	41,3250	69,2950	470,0	14	Янгибазар	Yangibazar	41,3021	69,5852	573,0

Рисунок 3. Схема расположения станций сейсмической сети Узбекистана [9]

В *Кыргызстане* сейсмическая сеть состоит из 27 станций: из которых 10 входят в состав сети KNET, подведомственной Научной станции РАН в г. Бишкеке, 15 — в состав сети KRNET, контролируемой Институтом сейсмологии НАН КР (ИС НАН КР), и 2 — в состав сети CAREMON, созданной по проекту Геофизического Центра исследований Земли в Потсдаме (GFZ Potsdam) — (таблица 6, рисунок 4).

Рисунок 4. Схема расположения станций сейсмической сети Кыргызстана

Топологию сети KNET (дата создания 1991 г.) разработали Фрэнк Ли Вернон, Глен Дэвид Офилд, Юрий Андреевич Трапезников, Виталий Дмитрие-

вич Брагин, Феликс Николаевич Юдахин. Оборудование KNET представлено широкополосными сейсмометрами STS-2 с 24-битными регистраторами данных PASSCAL [10]. Первой была установлена цифровая сейсмическая станция Ала-Арча (ААК). Данные KNET поступают в Институт сейсмологии НАН КР (ИС НАН КР), на Научную Станцию (НС РАН) и в сейсмологический центр США (IRIS). Параметры землетрясений определяются операторами после предварительной обработки сейсмограмм в автоматическом режиме с использованием специального программного обеспечения [11]. В качестве основной скоростной модели литосферы выбрана шестислойная модель Стива Рёккера. Сеть позволяет наблюдать за геодинамическими процессами Тянь-Шаня и Бишкекского геодинамического полигона. Следует отметить, что одним из преимуществ сейсмических станций, функционирующих на территории Кыргызстана, является то, что они расположены на региональных расстояниях относительно всех испытательных полигонов Центральной Азии (Семипалатинский испытательный полигон, Лобнор, Похаран, Чагай, мирные ядерные взрывы), что позволяло и позволяет эффективно использовать эти станции при мониторинге различных взрывов [12].

Во время первого большого проекта с 1997 по 2000 гг. («Структура и эволюция Тянь-Шаня в Центральной Азии») были установлены 17 сейсмостанций в автономных бункерах и на сейсмостанциях Института сейсмологии Национальной Академии наук КР. Использовались сейсмостанции типа REFTEK 72A-08, блоки памяти REFTEK 72A-05 4.4MB, сейсмометры типа Streckeisen STS-2, фирмы Guralp CMG-3ESP, CMG-40T, GPS блоки REFTEK 111A. Эксплуатацию станций – профилактику, взаимодействие со специалистами PASSCAL Instrument Center, обновление программного обеспечения, ремонт, анализ качества данных, архивирование данных, — выполняла группа ГВНТиА НС РАН [10].

Nº	Станц	Р	Коорд	инаты	Высота	Сеть	Na	Станция	Станция		инаты	Высота	Сеть
Mō	Название	Код	LAT	LON	Н, м	Название	Nº	Название	Код	LAT	LON	Н, м	Название
1	Ананьево	ANVS	42,7861	77,6672	1864	KRNET	15	Токтогул	TOKL	41,9833	72,8681	1097	KRNET
2	Арал	ARLS	41,8544	74,3289	1526	KRNET	16	Салом-Алик	SALK	40,8833	73,8208	1672	KRNET
3	Аркит	ARK	41,8	71,9667	1420	KRNET	17	Суфи-Курган	SFK	40,0167	73,5025	2110	CAREMON
4	Арсланбоб	ARSB	41,3233	72,9811	1378	KRNET	18	Алмалы-Ашуу	AML	42,131	73,694	3400	KNET
5	Баткен	BTK	40,0575	70,8181	980	KRNET	19	Ала-Арча	AAK	42,6375	74,4943	1648	KNET
6	Бишкек	FRU1	42,8333	74,6167	929	KRNET	20	Чумыш	CHM	42,9985	74,7511	655	KNET
7	Боом	BOOM	42,4922	75,9422	1737	KRNET	21	Эркин-Сай	EKS2	42,6615	73,7772	1360	KNET
8	Каджи-Сай	KDJ	42,1272	77,1944	1830	KRNET	22	Карагай-Булак	KBK	42,6563	74,9477	1760	KNET
9	Каракол	PRZ	42,5	78,4	1835	KRNET	23	Кызарт	KZA	42,0777	75,2495	3520	KNET
10	Карамык	DRK	39,4833	71,805	2627	KRNET	24	Токмок	TKM2	42,9207	75,5965	2020	KNET
11	Нарын	NRN	41,4222	75,97	2120	KRNET	25	Учтор	UCH	42,2275	74,5133	3850	KNET
12	Ош	OHH	40,5244	72,785	800	KRNET	26	Улахол	ULHL	42,2455	76,2417	2040	KNET
13	Талас	MNAS	42,4894	72,5067	1465	CAREMON	27	Успеновка	USP	43,2668	74,4997	740	KNET

Таблица 6. Список станций, входящих в сейсмическую сеть Кыргызстана [13]

Терек-Сай

TRKS

41,4625

71,1733

1518

KRNET

Второй проект – «Совместные исследования: дискретность в сравнении с непрерывной континентальной деформацией и роль нижней коры в Тянь-Шане» – выполнялся с июля 2003 г. по июль 2008 г. В Соглашении о научно-техническом сотрудничестве участвовали: от США – Ренселлелеровский политехнический институт (проф. С. Рёкер) и Университет штата Южная Каролина (проф. Дж. Нэпп); от РФ и КР – Научная станция (Л.М. Богомолов) и Международный научно-исследовательский центр — геодинамический полигон в г. Бишкеке, МНИЦ-ГП (Г.Г. Щелочков). На начало 2011 г. группа ГВНТиА НС РАН участвовала в работах по двум Соглашениям МНИЦ с США и в двух международных проектах [10].

СЕТИ, СОЗДАННЫЕ В РАМКАХ НАУЧНО-ИССЛЕ-ДОВАТЕЛЬСКИХ ПРОЕКТОВ **CAREMON**, **TIPTIMON** И ДР.

Проект CASCADE способствовал созданию трансграничного научного консорциума по снижению риска землетрясений в Центральной Азии (COSERICA). Региональными членами консорциума COSERICA, подписавшими двусторонний меморандум о взаимопонимании совместно с Центром Гельмгольца в Потсдаме (Helmholtz Centre Potsdam) и Геофизическим Центром исследований Земли Потсдама (GFZ Potsdam), стали: Казахстанский институт сейсмологии (IOS), Алматы; Национальный ядерный центр РК (исполнитель – Институт геофизических исследований), Центр по сбору и обработке специальной сейсмической информации (Алматы, Казахстан); Центрально-Азиатский институт прикладных исследований Земли (ЦАИИЗ, Бишкек, Кыргызстан); Институт Сейсмологии НАН КР (ИС НАН КР), Бишкек, Кыргызстан; Международный университет инновационных технологий (Бишкек, Кыргызстан); Кыргызский государственный университет строительства, транспорта и архитектуры (КГУСТА, Бишкек, Кыргызстан); Институт геологии, сейсмостойкого строительства и сейсмологии (ИГЕИ, Душанбе, Таджикистан); Институт сейсмологии (Ашхабад, Туркменистан); Научно-исследовательский институт сейсмостойкого строительства, (Ашхабад, Туркменистан); Институт сейсмологии АН РУ (Ташкент, Узбекистан). В настоящее время обсуждаются соглашения о сотрудничестве с рядом других региональных и международных институтов, поэтому список партнеров COSERICA будет расширен [14]. Помимо этого, в районе Памира мониторинг осуществляет Китайская сейсмическая сеть XJ, оборудованная как широкополосными, так и короткопериодными сейсмометрами. Обработку ведет Китайский центр мониторинга землетрясений (China Earthquake Network Center, CENC). Со стороны *Российской Федерации* землетрясения Центральной Азии регистрируют и изучают в Алтае-Саянском филиале ФГБУН ФИЦ «Единой геофизической службой Российской академии наук» (АСФ ФИЦ ЕГС РАН). Данную территорию охватывает также сейсмическая сеть *Монголии*, состоящая из 14 станций, находящихся на расстояниях 20–30 км друг от друга.

По проекту TASK FORCE создана сеть «4В» в Кыргызстане, которая осуществляла работу в 2008-2009 гг. (таблица 7). На базе уже существовавших станций был осуществлен проект сейсмической сети Центрально-Азиатской границы (Central Asian Crossborder Network CAREMON). Сеть состояла из семи 3-х компонентных станций, созданных в 2009-2011 гг. В сеть входили: 1 станция в Туркменистане -Ашхабат (Институт сейсмологии); 1 станция в Таджикистане – Джерно (Таджикский Институт сейсмостойкого строительства и сейсмологии); 2 станции в Кыргызстане - Талас (Институт сейсмологии Кыргызстана) и Сафы-Курган (Центрально-Азиатский Институт прикладных исследований Земли) и 1 станция в Узбекистане - Ташкент (Институт сейсмологии) [15], а также две станции (Подгорное и Ортау были установлены на территории Казахстана в 2010 г.

Совместный кросс-дисциплинарный проект **ТІРТІМО** по длительному мониторингу геодинамики и изменению климата в Центральной Азии на территории трех государств - Кыргызстана, Таджикистана и Узбекистана осуществлен в 2008-2013 гг. кооперацией Научной станции РАН в г. Бишкеке, Института геологии Академии Наук Республики Таджикистан, Технического университета «Фрайбергская горная академия», Университетом Йены и Геофизическим центром исследований Земли в Потсдаме. Полученные данные были представлены магнитотеллурическими (благодаря Научной станции РАН в г. Бишкеке), электроразведочными и сейсмологическими (короткопериодного диапазона 10^{-3} – 10^{-1} c) данными. В 2008 и 2009 гг. проект был расширен до TIPAGE.

		Tuonuna 7. Chacok emangua, oxoonaqua o eeuema eekylo eemo ehikemon (eh) [5]			
Nº	V	0	Координаты		
Mō	Код	Описание станции	LAT	LONG	
1	ASHT	Институт сейсмологии. Станция Ашхабат. Туркменистан	37,94208	58,38473	
2	DZET	Таджикский институт сейсмостойкого строительства и сейсмологииСтанция Джерно. Таджикистан	38,80545	68,82701	
3	MNAS	Институт Сейсмологии Кыргызстана. Станция Талас. Кыргызстан	42,49321	72,49757	
4	OTUK	Институт геофизических исследований. Станция Ортау. Казахстан	48,24446	72,33778	
5	POGK	Институт геофизических исследований. Станция Подгорное. Казахстан	43,32764	79,48492	
6	SFK	Центрально-Азиатский Институт прикладных исследований Земли (ЦАИИЗ). Станция Суфи-Курган. Кыргызстан	40,01698	73,50773	
7	TAS	Институт сейсмологии. Станция Ташкент. Узбекистан	41,3294	69,2958	

Таблица 7. Список станций, входящих в сейсмическую сеть CAREMON (CK) [3]

Сейсмическая сеть **TIPAGE** («7В») на территориях Таджикистана и Кыргызстана в 2008–2010 гг. использовалась для изучения глубинных структур и геодинамических процессов в зонах столкновения Тянь-Шаня и Памира в Центральной Азии. В 2008 г. в общей сложности 40 сейсмических станций были развернуты преимущественно вдоль профиля северюг длиной 350 км и частично в виде редкой 2D сети, охватывающей площадь 300×300 км от центрального плато Памир (таблица 8, рисунок 5). В 2009 г. сеть была перестроена в 2D сеть с более высокой плотностью станций. Всего в проекте участвовало 57 станций [doi: 10.14470/20097102]. Подпроект № 8 исполнялся в 2012 г. совместно с Центрально-Азиатским институтом прикладных исследований Зем-

ли и был нацелен на изучение палеосейсмологии макроструктур и сейсмической истории активных разломов Тянь-Шаня.

Сейсмическая сеть «6С» (таблица 9) была развернута на территории *Афганистана* в 2013—2014 гг. в рамках программы САМЕ (Средняя Азия – Monsoon Dynamics и Гео-экосистема) по проекту **ТІРТІМОN** (программа мониторинга Тянь-Шаня—Памира) с целью изучения сейсмотектоники Гиндукуша и Таджикско-афганского бассейна. Все 8 станций были оснащены 3-х компонентными геофонами марки MARK L-4C-3D и рекордерами DSS CUBE, которые вели непрерывную запись с дискретизацией 100 отсчетов в сек. [doi: 10.14470/1P7568352842].

Таблица 8 Сп	паниии. входяшие	e coñemuecano	comp TIPAGE	$(u7R_{\rm W})$	[27]
таолина о. Сп	таниии, вхооящие	в сеисмическую	cemb HFAGE	(((D)))	וכו

Nº		Станция	Коорд	инаты	Nº		Станция	Коорд	Координаты		
Mā	Код	Страна	LAT	LONG	IN⊻	Код	Страна	LAT	LONG		
1	AGA9	Кыргызстан	39,38098	72,28005	30	P08	Кыргызстан	39,50681	73,26753		
2	KAR9	Таджикистан	39,49319	71,75632	31	P09	Таджикистан	39,37371	73,32623		
3	KIR9	Таджикистан	40,02559	72,91928	32	P10	Таджикистан	39,27826	73,36461		
4	KSU9	Таджикистан	39,64313	72,66618	33	P11	Таджикистан	39,12707	73,53219		
5	LEN9	Таджикистан	39,4792	72,91009	34	P12	Таджикистан	39,01499	73,56756		
6	ALI8	Таджикистан	37,79447	73,39705	35	P13	Таджикистан	38,87095	73,50127		
7	BAR8	Кыргызстан	37,94205	71,45329	36	P14	Таджикистан	38,7093	73,51657		
8	BRC9	Таджикистан	38,30938	72,47465	37	P15	Таджикистан	38,56333	73,62466		
9	BUL9	Таджикистан	37,87692	72,88939	38	P16	Таджикистан	38,49298	73,86337		
10	CHU9	Кыргызстан	39,17996	71,09528	39	P17	Таджикистан	38,32936	74,02196		
11	DKO8	Таджикистан	39,55386	72,21786	40	P18	Таджикистан	38,14757	73,96268		
12	FRK9	Таджикистан	37,39417	69,32938	41	P19	Таджикистан	38,01392	73,9397		
13	ISH8	Таджикистан	36,68349	71,79446	42	P20	Таджикистан	37,93403	74,02341		
14	KAW8	Кыргызстан	39,07096	73,10701	43	P21	Таджикистан	37,80283	74,21337		
15	KAW9	Таджикистан	39,05098	73,11613	44	P23	Таджикистан	37,56239	74,15751		
16	KIK9	Таджикистан	38,4685	70,82222	45	P24	Таджикистан	37,45906	74,16129		
17	KOK8	Кыргызстан	38,66216	72,84871	46	PAS8	Таджикистан	38,87341	71,45415		
18	KRG8	Таджикистан	37,45454	73,08263	47	POI8	Таджикистан	38,65089	71,94102		
19	LAN9	Кыргызстан	37,03697	72,63406	48	POI9	Таджикистан	38,65525	71,97578		
20	MAD8	Таджикистан	38,15565	73,61015	49	RAJ8	Таджикистан	38,15102	71,94334		
21	MIY8	Таджикистан	37,71804	72,37805	50	RAN8	Таджикистан	38,48119	74,3795		
22	NUR8	Кыргызстан	39,63945	73,85789	51	SBD9	Таджикистан	37,85275	70,05897		
23	P01	Кыргызстан	40,4196	73,08032	52	SHA8	Таджикистан	37,53764	74,81988		
24	P02	Кыргызстан	40,31751	73,23359	53	SHN9	Таджикистан	37,04139	71,51616		
25	P03	Кыргызстан	40,17129	73,48497	54	TAB8	Таджикистан	37,23438	72,1561		
26	P04	Кыргызстан	40,05572	73,54691	55	TOK9	Таджикистан	37,82747	74,64877		
27	P05	Кыргызстан	39,90569	73,40466	56	VAN9	Таджикистан	38,33862	71,41946		
28	P06	Кыргызстан	39,73058	73,25204	57	ZOR9	Таджикистан	37,48013	73,73392		
29	P07	Кыргызстан	39,69466	73,23569							

Таблица 9. Станции, входящие в сейсмическую сеть FERGHANA «6С» в Кыргызстане [3]

Nº		Станция	Коорд	инаты	Nº		Станция	Координаты	
IN	Код	Название	LAT	LONG	IN≥	Код	Название	LAT	LONG
1	F01	Таш-Кумыр	41,358	72,2339	10	F12	Орозбеково	40,047612	71,660553
2	F02	Джаны-Жол	41,606413	72,120845	11	F13	Кадамджай	40,00473	72,092558
3	F03	Сугут	41,4816	71,5923	12	F14	Уч-Коргон	40,206232	72,066533
4	F04	Майли-Суу	41,261633	72,461897	13	F16	Сары-Бийя	40,569408	73,880364
5	F05	Массы	41,10635	72,66734	14	F17	Каракол	41,620437	72,691643
6	F06	Дмитриевка	41,125283	73,310533	15	F19	Кара-Кохта	40,3426	72,6166
7	F07	Джалал-Абад	40,970703	73,043133	16	F20	Кызыл-Уран	41,696352	73,329653
8	F10	Ак-Терек	40,862667	73,675245	17	F21	Арсланбоб	41,24251	72,98352
9	F11	Кысык-Алма	40,6368	73,247	18	F22	Ой-Тал	40,43089	74,08887

Проект **FERGHANA** («6С») осуществлялся с использованием 18 станций на территории юга Кыргызстана в 2009—2010 гг. для оценки геодинамики неотектонического блока Южного Тянь-Шаня и проявлений оползней в этом регионе. Этот проект был неразрывно связан с проектом «Наблюдения глобальных изменений в Центральной Азии», раздел «Тектоника и климат» (POF II-Theme «Global Change Observatory Central Asia»). В 2010—2012 гг. проводился также мониторинг 4 станциями сети **КС** (таблица 10, рисунок 6) под оперативным руководством Центрально-Азиатского Института прикладных исследований Земли (ЦАИИЗ).

Таблица 10. Станции, входящие в сейсмическую сеть КС в Кыргызстане [3]

Nº		Станция	Координаты			
INI≌	Код	Название	LAT	LONG		
1	ASAI	Аксай	40,9178	76,521		
2	ENEL	Энылчек	42,1529	79,455		
3	MRZ1	Озеро Мерзбачер	42,2246	79,8597		
4	TARG	Тарагай	41,7291	77,8048		

Рисунок 5. Схема расположения станций сейсмической сети TIPAGE («7В») [3]

Рисунок 6. Схема расположения станций сейсмической сети КС [3]

Сейсмическая сеть «5С» (Таблица 11таблица 11) была установлена в 2012–2014 гг. в *Таджикистане* по проекту **ТІРТІМОN** и состояла из 34 станций. Целью инсталляции было изучение сейсмотектоники западного Памира и таджикско-афганского бассейна. Изначально состояла из 25 станций, которые осуществляли запись с оцифровкой 100 отсчетов/сек. и оснащены рекордерами EDL (EarthData PR6-24) и широкополосными сейсмометрами. [doi: 10.14470/ 0P7567352807].

Таблица 11. Станции, входящие в сейсмическую сеть «5C» TIPTIMON в Таджикистане (https://doi.org/10.14470/0P7567352807)

Nº	Код	Координаты		No	V	Координаты	
		LAT	LONG	Nº	Код	LAT	LONG
1	AIN2	39,38912	68,54383	18	PIC2	39,00646	69,35254
2	BAL2	38,30459	69,67062	19	QUM2	37,42958	68,68763
3	BAR2	37,9421	71,45339	20	SBD2	37,85275	70,05899
4	CDA2	37,75668	69,83372	21	SHU2	38,01105	69,76023
5	FRK2	37,39438	69,30005	22	SHP2	38,84075	70,77992
6	GAN2	37,93341	68,59559	23	TAB2	37,23438	72,15613
7	GCH2	37,19937	71,54546	24	TAV2	38,67568	70,49674
8	HOI2	39,18008	70,88634	25	VAN2	38,37526	71,46708
9	ISH2	36,68377	71,79406	26	BAC2	38,31505	69,6727
10	JOR2	39,10065	70,59066	27	HOT2	39,18071	70,8866
11	KAL2	37,83819	69,09501	28	KSN2	38,90642	69,93552
12	KHV2	38,38733	70,03655	29	MAR2	39,18675	68,72934
13	KID2	38,63666	69,49506	30	SAN2	38,37819	70,13874
14	KIK2	38,46849	70,82207	31	BAC3	38,31496	69,6728
15	KSM2	38,90668	69,93658	32	GUL3	38,663	69,51311
16	PAN2	38,27524	70,57496	33	PES3	38,60193	69,92257
17	PES2	38,60176	69,92249	34	VIS3	38,89553	69,27827

На территории Таджикистана в 2016-2017 гг. работали 11 станций (таблица 12, рисунок 7) в составе сети с названием «Сарез Памир» («Sarez Pamir», «9Н»), созданной Геофизическим Центром исследований Земли в Потсдаме (GFZ Potsdam). Сейсмическая сеть «Сарез Памир» была установлена через два месяца после землетрясения 7 мая 2015 г. с магнитудой M_w=7,2 на восточной части Памирского нагорья Таджикистана. В сентябре 2016 г. часть станций была перенесена в южный Памир. Оборудование было представлено широкополосными 3-компонентными сейсмометрами типа Trillium Compact. Данные были записаны с использованием рекордеров земных данных (EDR), запись была непрерывной с частотой дискретизации 100 Гц. Основная цель сети заключалась в записи последовательности афтершоков землетрясения в Сарезе и увеличении однополярной сейсмической сети Восточный Памир Китай и ранее существующих сейсмических сетей TIPAGE и TIPTIMON [doi: 10.14470/4U7561589984].

Таблица 12. Станции, входящих в сейсмическую сеть «Sarez Pamir» («9Н») в Таджикистане по проекту TIPTIMON [3]

Nº	V	Координаты			
M₽	Код станции	LAT	LONG		
1	ICE6	38,67722	73,18065		
2	P146	38,70931	73,51652		
3	MAD6	38,15565	73,61015		
4	BRC6	38,30923	72,47451		
5	BRC6	38,30941	72,47342		
6	SUM6	37,76606	72,98528		
7	CHE6	38,34033	74,01249		
8	P116	39,12725	73,533		
9	P236	37,56215	74,15769		
10	LAN6	37,03681	72,634		
11	ISH6	36,68384	71,79388		

Рисунок 7. Схема сейсмической сети «Sarez Pamir» («9Н») по проекту ТІРТІМОN. 2016-2017 гг. (doi.org/10.14470/4U7561589984)

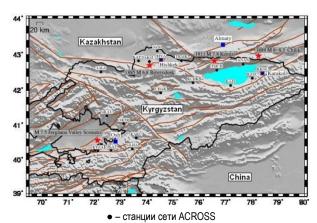


Рисунок 8. Схема сейсмической сети ACROSS [16]

Сеть ACROSS на территории Кыргызстана была установлена в 2015 г. К 2017 г. сеть ACROSS состояла из 19 станций сильных движений (рисунок 8), распределенных по всей территории Кыргызской Республики. Одна станция, расположенная в Бишкеке, оснащена датчиком Guralp CMG-5TC3 и цифровым преобразователем СМG-DM24S12EAM4, непрерывно регистрирующим 500 отчетов/сек. Другие 18 станций оборудованы преобразователями Nanometrics Centaur Digitisers и датчиками сильных движений Titan, которые записывают в непрерывном режиме с частотой 100 отсчетов/сек. Данные передаются в Центрально-Азиатский институт прикладных исследований Земли (ЦАИИЗ, Бишкек, Кыргызстан). Сеть способна регистрировать события магнитудой 4-5. Сеть ACROSS установлена по инициативе ассоциации Гельмгольца. Проект был поддержан Глобальной обсерваторией изменений в Центральной Азии Геофизического Центра исследования Земли в Потсдаме (GFZ) [16].

ЛИТЕРАТУРА

- 1. Khalturin, V. I. Seismicity, Recent Seismic Observations and Seismological Institutes in Post-Soviet Central Asian Republics / V. I. Khalturin, P. G. Richards, W.-Y. Kim // Open report 2006. 29 p.
- 2. Непеина, К. С. Обзор современной практики использования группирования сейсмометров на примере Средней Азии // Матер. X междунар. науч. конф. «Современные техника и технологии в научных исследованиях». Бишкек. 2018. С. 85—90.
- 3. Международная федерация сетей цифровых сейсмографов (FDSN) [Электронный ресурс]. Режим доступа: www.fdsn.org/networks/. Дата обращения 27.02.2018.
- 4. Казахстанский национальный центр данных (KNDC) [Электронный ресурс]. Режим доступа: www.kndc.kz. Дата обращения 27.02.2018.
- 5. Михайлова, Н.Н. Казахстанский центр сбора и обработки специальной сейсмической информации: функции, задачи, система телекоммуникаций, базы данных / Н.Н. Михайлова, И.И. Комаров, З.И. Синева, И.Н. Соколова // Вестник НЯЦ РК. 2001. Вып. 2. «Геофизика и проблемы нераспространения». С. 21–27.
- ТОО «Сейсмологическая опытно-методическая экспедиция Комитета науки Министерства образования и науки Республики Казахстан» (ТОО «СОМЭ») [Электронный ресурс]. Режим доступа: [http://mes.kg/upload/kniga_2014/book_rus000.html].
- 7. Hakimov, F. Tajik seismological networks data collection, analysis and applications in hazard assessment // Workshop on training in network management systems and analytical tools for seismic. Baku, Azerbaijan. 23–27 October 2017.
- 8. Институт сейсмологии и физики атмосферы Академии наук Туркменистана [Электронный ресурс]. Режим доступа: [science.gov.tm/organisations/seismic institute]. Дата обращения 28.03.2018.
- 9. Институт сейсмологии Узбекистана [Электронный ресурс]. Режим доступа: isas.uzsci.net. Дата обращения 27.03.2018.
- 10. Научная станция РАН в г. Бишкеке [Электронный ресурс]. Режим доступа: www.gdirc.ru/. Дата обращения 27.03.2018.
- 11. Сычева, Н.А. Киргизская сейсмологическая сеть KNET / Н.А. Сычева // Вестник КРСУ. 2016. Т. 16.,№ 5. С. 175–183.

СЕТИ СЕЙСМИЧЕСКИХ НАБЛЮДЕНИЙ В ЦЕНТРАЛЬНОЙ АЗИИ

- 12. Bragin, D. The Kyrgyz Seismic Network (KNET) / D. Bragin [et al] // AGU Spring Meeting Abstracts. 2007.
- 13. Абдрахматов, К.Е. Система сейсмического мониторинга территории Кыргызстана / К.Е. Абдрахматов, А.В. Берёзина, Е. В. Першина, Е. Л. Мозолева // Вестник Института сейсмологии НАН КР. 2014. № 2 (4). С. 14–21.
- 14. Tyagunov, S. Seismic risk assessment in the countries of Central Asia / International conference on Complexity in earthquake dynamics: From nonlinearity to earthquake prediction and seismic stability / S. Tyagunov [et al] // Tashkent, Uzbekistan, 2012. – doi: 10.13140/2.1.2443.5207.
- 15. Михайлова, Н.Н. Новые казахстанские станции, установленные в рамках проекта CAREMON / Н.Н. Михайлова [и др.] // Вестник НЯЦ РК. 2012. Вып. 1. С. 27–32.
- 16. Parolai, S. Assessing earthquake early warning using sparse networks in developing countries: case study of the Kyrgyz Republic / S. Parolai [et al] // Front. Earth Sci. 5:74. 2017. Vol. 5, Article 74. P. 1–15. doi: 10.3389/feart. 2017.00074.

ОРТАЛЫҚ АЗИЯДАҒЫ СЕЙСМИКАЛЫҚ БАҚЫЛАУ ЖЕЛІЛЕРІ

Непеина К.С.

Бішкек қаласындағы Ресей ғылым академиясының ғылым станциясы, Бішкек, Қырғызстан

Орталық Азиядағы сейсмикалылықтың мониторинг жүйелері сипатталған, ұлттық сейсмикалық желілеріне кіретін станциялардың кейбір сипаттамалары мен құрылу тарихы келтірілген. 2018 ж. жағдайы бойынша жерсілкінулер мен ядролық сынауларды тіркеудің тұрақты және уақытша жүйелерінің шолуы мен оларды әртүрлі міндеттерді шешу үшін және зерттеу жобаларында пайдалану ұсынылған.

SEISMOLOGICAL NETWORK OBSERVATIONS IN CENTRAL ASIA

K.S. Nepeina

Research Station of the Russian Academy of Sciences, Bishkek, Kyrgyzstan

In this paper, seismic monitoring systems in Central Asia are presented. The description, some characteristics and history of creation of the stations entering into national seismic networks of monitoring are given. A review is provided for stationary and temporary systems for recording earthquakes and nuclear explosions for the period of up to 2018 and their use when solving various tasks in research projects.