INFLUENCE OF EQUAL-CHANNEL ANGULAR COMPRESSION MODES ON THE FORMATION OF THE STRUCTURE AND PROPERTIES OF THE AMts ALLOY
https://doi.org/10.52676/1729-7885-2020-1-40-45
Abstract
n this work the peculiarities of formation ultrathingrained structure and regularities of mechanical properties improvement of aluminum alloy AMЦ, processed by equal channel angular pressing (ECAP). A systematic study of changes in the structure and mechanical characteristics (microhardness and wear resistance) of the AMЦ aluminum alloy, depending on the number of passes and the angle between the pressing channels at the ECAP. The work shows that by varying the number of passes, different grain sizes and different values of mechanical characteristics can be obtained. It was found that with a decrease in grain size, the microhardness of the AMЦ alloy increases by 4.5 times compared to the initial state. It is shown that after ECAP-12, the mass loss decreases, which shows an increase in the wear resistance of the AMЦ alloy by 13–14%. It was identified that after the ECAP of the AMЦ, the strength characteristics increase, and the plasticity decreases when the transition to the ultrathingrained state.
About the Authors
B. K. RakhadilovKazakhstan
Ust-Kamenogorsk
G. B. Botabaeva
Kazakhstan
Ust-Kamenogorsk
M. S. Zhaparova
Kazakhstan
Ust-Kamenogorsk
G. K. Uazyrkhanova
Kazakhstan
Ust-Kamenogorsk
L. B. Bayatanova
Kazakhstan
Ust-Kamenogorsk
References
1. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation // Progress in Materials Science V. 45, P. 103–189 (2000).
2. Gorelik S.S., Dobatkin C.B., Kaputkina JIM. Rekristallizatsiya metallov i splavov 3-ye izd. M.: MISIS, P. 432 (2005) [in Russian].
3. Storojeva L., Ponge D., Kaspar D., Raabe D. Development of microstructure and texture of medium carbon steel during heavy warm deformation // Acta Materialia 52, P. 2209–2220 (2004).
4. Raabe D., Kumar R. Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling // Scripta Materialia 66, P. 634–637 (2012).
5. Segal V.M. Razvitiye obrabotki materialov intensivnoy sdvigovoy deformatsiyey / V.M. Segal // Metally 1, P. 5–14 (2004) [in Russian].
6. Grigorevich V.K. // Tverdost' i mikrotverdost' metallov. - M.: Nauka, P. 230 (1976) [in Russian].
7. Valiyev R.Z., Aleksandrov I.V. Nanostrukturnyye materialy, poluchennyye intensivnoy plasticheskoy deformatsiyey. M.: Logos, P. 272 (2000) [in Russian].
8. Skakov, M., Rakhadilov, B., Scheffler, M., Batyrbekov, E. Microstructure and tribological properties of electrolytic plasma nitrided high-speed steel // Materials Testing 57(4), P. 360–364 (2015).
9. Uazyrkhanova G., Rakhadilov B., Myakinin A., Uazyrkhanova Zh. The Change in the Thin Structure and Mechanical Properties of Aluminum Alloys at Intensive Plastic Deformation // Materials Science Forum Submitted: 1662-9752, V. 906, P. 114–120 / Trans Tech Publications, Switzerland (2017).
10. Tereshchenko N.A., Yakovleva I.L., Zubkova T.A., Chukin M.V., and Koptseva N.V. Structure Levels of Pearlite Deformation in Carbon Steel of Eutectoid Composition // The Physics of Metals and Metallography V.114, 5, P. 430–439 (2013).
11. Belyakov A., Sakai T., Miura H., Kaibyshev R. Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel // Scripta Mater Vol. 42, 4, P. 319–325 (2000).
12. Calcagnotto M., Adachi Y., Ponge D., Raabe D. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging // Acta Materialia 59, P. 658–670 (2011).
Review
For citations:
Rakhadilov B.K., Botabaeva G.B., Zhaparova M.S., Uazyrkhanova G.K., Bayatanova L.B. INFLUENCE OF EQUAL-CHANNEL ANGULAR COMPRESSION MODES ON THE FORMATION OF THE STRUCTURE AND PROPERTIES OF THE AMts ALLOY. NNC RK Bulletin. 2020;(1):40-45. (In Russ.) https://doi.org/10.52676/1729-7885-2020-1-40-45