МЕТОДЫ СИНТЕЗА НАНОСТРУКТУР ОКСИДА НИКЕЛЯ - КРАТКИЙ ОБЗОР
Аннотация
Предполагается, что суперконденсаторы, ионно-литиевые батареи, газовые датчики и электрохроматические устройства будут играть важную роль в разработке устойчивых технологий. Достигнутый в последнее время прогресс показал, что наноструктурированные оксиды никеля являются весьма перспективными кандидатами для эффективных систем преобразования и хранения энергии. В последнее время интерес растет к наночастицам оксида никеля ввиду их уникальных физических и химических свойств. В данной работе синтез наночастиц оксида никеля в первую очередь классифицируется методом получения. В данном обзоре также дается сравнительный обзор влияния технологических условий на свойства наночастиц оксида никеля.
Список литературы
1. I. Hotovy, V. Rehacek, P. Siciliano, et al. Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films. 418, 2002, 9-15. https://doi.org/10.1016/S0040-6090(02)00579-5
2. H. Xiao, S. Yao, H. Liu et al. NiO nanosheet assembles for supercapacitor electrode materials. Progress in Natural Science: Materials International. 26, 2016, 271-275. https://doi.org/10.1016/j.pnsc.2016.05.007
3. X. Wang, L. Sun, X. Sun et al. Size-controllable porous NiO electrodes for high-performance lithium ion battery anodes. Materials Research Bulletin. 96, 4, 2017, 533537.
4. F. Liu, Y. Sang, H. Ma. Nickel oxide as an effective catalyst for catalytic combustion of methane. Journal of Natural Gas Science and Engineering. 41,2017, 1-6. https://doi.org/10.1016/j.jngse.2017.02.025
5. A. Nattestad, M. Ferguson, R. Kerr et al. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology 19 (2008). https://doi.org/10.1088/0957-4484/19/29/295304
6. Y. Zhang, Z. Li. Low-temperature fabrication of sol-gel NiO film for optoelectronic devices based on the ‘fuel’ of urea. Ceramics International. 42, 2016, 6360-6368. https://doi.org/10.1016/j.ceramint.2016.01.030
7. L. Ai, Y. Zeng. Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chemical Engineering Journal 215-216 (2013) 269-278. https://doi.org/10.1016/j.cej.2012.10.059
8. Y. Zheng, B. Zhu, H. Chen et al. Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water. Journal of Colloid and Interface Science 504 (2017) 688-696. https://doi.org/10.1016/j.jcis.2017.06.014
9. G. Bodurov, P. Stefchev, T. Ivanova et al. Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in “Smart Windows”. Materials Letters 117 (2014) 270-272. https://doi.org/10.1016/j.matlet.2013.11.118
10. J. F. K. Cooper, A. Ionescu, R. M. Langford et al. Core/shell magnetism in NiO nanoparticles. Journal of Applied Physics 114, 083906 (2013). https://doi.org/10.1063/1.4819807
11. O. Seo, A. Tayal, J. Kim et al. Tuning of structural, optical band gap, and electrical properties of room-temperature-grown epitaxial thin films through the Fe2O3:NiO ratio. Scientific Reports. (2019) 9:4304. https://doi.org/10.1038/s41598-019-41049-9
12. K. Kaviyarasu, E. Manikandan, J. Kennedy et al. Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceramics International. 42, 7, 2016, 8385-8394. https://doi.org/10.1016/j.ceramint.2016.02.054
13. Z. Y. Wu, C. M. Liu, L. Guo. Structural Characterization of Nickel Oxide Nanowires by X-ray Absorption NearEdge Structure Spectroscopy. J. Phys. Chem. B 2005, 109, 2512-2515.
14. H. Yang, J. Zou. Controllable preparation of hierarchical NiO hollow microspheres with high pseudo-capacitance. Transactions of Nonferrous Metals Society of China. 28, 2018, 1808-1818. https://doi.org/10.1016/S1003-6326 (18)64825-3
15. S. A. Needham, G. X. Wang, H. K. Liu. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources. 159, Issue 1, 13 2006, 254-257. https://doi.org/10.1016/j.jpowsour.2006.04.025
16. V. Sudha, S. M. Senthil Kumar, R. Thangamuthu et al. Synthesis and characterization of NiO nanoplatelet and its application in electrochemical sensing of sulphite. Journal of Alloys and Compounds. 744, 2018, 621-628. https://doi.org/10.1016/j.jallcom.2018.02.098
17. S. R. Hosseini, S. Ghasemi, M. Kamali-Rousta. Preparation of NiO nanofibers by electrospinning and their application for electro-catalytic oxidation of ethylene glycol. International journal of hydrogen energy 42 (2017) 906-913. https://doi.org/10.1016/j.ijhydene.2016.09.116
18. N. N. Mohd Zorkipli, N. H. Mohd Kaus, A. A. Mohamad. Synthesis of NiO Nanoparticles through Sol-gel Method. Procedia Chemistry 19 (2016) 626-631. https://doi.org/10.1016/j.proche.2016.03.062
19. S. V. Ganachari, R. Bhat, R. Deshpande et al. Synthesis and characterization of nickel oxide nanoparticles by self-propagating low temperature combustion method. Recent Research in Science and Technology 2012, 4(4): 50-53.
20. K. S. Khashan, G. M. Sulaiman, A. H. Hamad et al. Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Appl. Phys. A (2017) 123:190 DOI 10.1007/s00339-017-0826-4
21. P. A. Sheena, K. P. Priyanka, N. Aloysius Sabu. Effect of calcination temperature on the structural and optical properties of nickel oxide nanoparticles. nanosystems: physics, chemistry, mathematics, 2014, 5 (3), P. 441-449.
22. V. Ranga Rao Pulimi, P. Jeevanandam. The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation. Journal of Magnetism and Magnetic Materials 321 (2009) 25562562. https://doi.org/10.1016/jjmmm.2009.03.039
23. L. Xiang, X. Y. Deng, Y. Jin. Experimental study on synthesis of NiO nanoparticles. Scripta Materialia 47(2002) 219-224.
24. J. Zhao, Y. Tan, K. Su et al. A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment. Applied Surface Science (2015), 337, 111-117. https://doi.org/10.1016/j.apsusc.2015.02.071
25. M. Arif, A. Sanger, M. Shkir. Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles. Physica B: Condensed Matter 552 (2019) 88-95. https://doi.org/10.1016/j.physb.2018.09.023
26. Xiang Yi Deng. Reaction in solution and Competitive balance of nano-NiO by ammonia precipitation. Solid State Phenomena Vols. 121-123 (2007) 359-362. https://doi.org/10.4028/www.scientific.net/SSP.121-123.359
27. Y. Bahari Molla Mahaleh, S. K. Sadrnezhaad, and D. Hosseini. NiO Nanoparticles Synthesis by Chemical Precipitation and Effect of Applied Surfactant on Distribution of Particle Size. Journal of Nanomaterials, 2008, 1-4. https://doi.org/10.1155/2008/470595
28. M. Aleahmad, H. G. Taleghania, H. Eisazadeh. Preparation and characterization of PAn/NiO nanocomposite using various surfactants. Synthetic Metals 161 (2011) 990-995. https://doi.org/10.1016/j.synthmet.2011.03.005
29. H. Pang, Q. Lu, Y. Li. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem. Commun., 2009, 7542-7544. https://doi.org/10.1039/b914898a
30. N. Sattarahmady, H. Heli, R. Dehdari Vais. A flower-like nickel oxide nanostructure:Synthesis and application for choline sensing. Talanta119(2014)207-213. https://doi.org/10.1016/j.talanta.2013.11.002
31. R. Krishnakanth, G. Jayakumar, A. Albert Irudayaraj. Structural and Magnetic Properties of NiO and Fe-doped NiO Nanoparticles Synthesized by Chemical Co-precipitation Method. Materials Today: Proceedings 3 (2016) 1370-1377.
32. B. Gokul, P. Matheswaran, K. M. Abhirami. Structural and dielectric properties of NiO nanoparticles. Journal of Non-Crystalline Solids 363 (2013) 161-166. https://doi.org/10.1016/jjnoncrysol.2012.12.007
33. D. Ai, Xiaming Dai, Qingfeng Li et al. Synthesis of NiO nanoparticles in ethylene glycol. China Particuology 2 (2004) 157-159.
34. M. El-Kemary, N. Nagy, I. El-Mehasseb. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing 16 (2013) 1747-1752. https://doi.org/10.1016/j.mssp.2013.05.018
35. M. Hashem, E. Saion, N. M. Al-Hada. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results in Physics 6 (2016) 1024-1030. https://doi.org/10.1016/j.rinp.2016.11.031
36. S. Wang, H. Pang, Hang Zhang. Synthesis of porous cubic nickel oxide nanostructures and their electrochemical property. Advanced Materials Research Vols. 557-559 (2012) 628-631. https://doi.org/10.4028/www.scientific.net/AMR.557-559.628
37. Z. Fereshteh, M. Salavati-Niasari, K. Saberyan. Synthesis of Nickel Oxide Nanoparticles from Thermal Decomposition of a New Precursor. J Clust Sci (2012) 23:577-583. https://doi.org/10.1007/s10876-012-0477-8
38. M. Salavati-Niasari, F. Mohandes, F. Davar. Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorganica Chimica Acta 362 (2009) 3691-3697. https://doi.org/10.1016/jica.2009.04.025
39. A. Barakat, M. Al-Noaimi, M. Suleiman. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua (2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex. Int. J. Mol. Sci. 2013, 14, 23941-23954. https://doi.org/10.3390/ijms141223941
40. A. D. Khalaji. Nickel Oxide (NiO) nanoparticles prepared by solid-state thermal decomposition of Nickel (II) schiff base precursor. Journal of Ultrafme Grained and Nanostructured Materials, 48 (2015) 1-4.
41. Z. Zhu, J. Ping, X. Huang et al. Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. J Mater Sci (2012) 47:503-507. https://doi.org/10.1007/s10853-011-5826-8
42. R. Zhang, J. Liu, H. Guo et al. Hierarchically porous nickel oxide nanoflake arrays grown on carbon cloth by chemical bath deposition as superior flexible electrode for supercapacitors. Materials Letters, 136, 2014, 198-201. https://doi.org/10.1016/j.matlet.2014.08.037
43. M. Martinez-Gil, M.I. Pintor-Monroy, M. Cota-Leal. Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Materials Science in Semiconductor Processing 72 (2017) 37-45. https://doi.org/10.1016/j.mssp.2017.09.021
44. A. I. Inamdar, Y. Kim, S. M. Pawar. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. Journal of Power Sources 196 (2011) 23932397.
45. S. U. Offiah, A. C. Nwanya, S. C. Ezugwu. Chemical Bath Synthesis and physico-chemical Characterizations of NiO-CoO Composite Thin Films for Supercapacitor applications. Int. J. Electrochem. Sci., 9 (2014) 5837-5848.
46. M. R. Das, A. Mukherjee and P. Mitra, Structural, Optical and ac electrical characterization of CBD synthesized NiO thin films: Influence of thickness, Physica E: Low-dimensional Systems and Nanostructures, 93, 2017, 243-251. https://doi.org/10.1016/j.physe.2017.06.018
47. X. H. Xia, J. P. Tua, J. Zhang et al. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials & Solar Cells 92 (2008) 628-633. https://doi.org/10.1016/j.solmat.2008.01.009
48. H. Yang, J-H. Yu, H. Jin Seo et al. Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum, Applied Surface Science 461(2018), 88-92.
49. Y. Akaltun, T. Qayrr. Fabrication and characterization of NiO thin films prepared by SILAR method. Journal of Alloys and Compounds 625 (2015) 144-148. https://doi.org/10.1016/j.jallcom.2014.10.194
50. G. S. Gund, C. D. Lokhande, H. S. Park, Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application, Journal of Alloys and Compounds, 741(2018), 549-556. https://doi.org/10.1016/).jallcom.2018.01.166.
51. S. U. Mutkule, S. T. Navale, V. V. Jadhav et al. Solution-processed nickel oxide films and their liquefied petroleum gas sensing activity. Journal of Alloys and Compounds 695 (2017) 2008-2015. https://doi.org/10.1016/jjallcom.2016.11.037
52. N. P. Klochko, K. S. Klepikova, D. O. Zhadan et al. Structure, optical, electrical and thermoelectric properties of solution processed Li-doped NiO films grown by SILAR. Materials Science in Semiconductor Processing 83 (2018) 42-49. https://doi.org/10.1016/j.mssp.2018.04.010
53. M. R. Das, A. Roy, S. Mpelane et al. Influence of dipping cycle on SILAR synthesized NiO thin film for improved electrochemical performance. Electrochimica Acta, 273 (2018), 105-114. https://doi.org/10.1016/j.electacta.2018.04.024
54. M. Ghobadifard, M. Mahmoudi, M. Khelghati. Sono-chemical Synthesis, Characterization and Gas Sensing Properties of NiO Nanoparticles. J. Nano. Adv. Mat. 3 (2015) 107-114. https://doi.org/10.12785/jnam/030204
55. S. Ata, A. Tabassum, M. I. Din. Novel sonochemical single step fabrication of NiO nanoparticles. Digest Journal of Nanomaterials and Biostructures, 11 (2016) 65-80.
56. W. Zhu, A. Shui, L. Xu. Template-free sonochemical synthesis of hierarchically porous NiO microsphere. Ultrasonics Sonochemistry 21 (2014) 1707-1713. https://doi.org/10.1016/j.ultsonch.2014.02.026
57. S. Gandhi, N. Nagalakshmi, I. Baskaran. Synthesis and Characterization of Nano-Sized NiO and Its Surface Catalytic Effect on Polyvinyl alcohol. Journal of Applied Polymer Science 118 (2010) 1666-1674. https://doi.org/10.1002/app.32570
58. S. M. Meybodi, S.A. Hosseini, M. Rezaee. Synthesis of wide band gap nanocrystalline NiO powder via a sono-chemical method. Ultrasonics Sonochemistry 19 (2012) 841-845. https://doi.org/10.1016/j.ultsonch.2011.11.017
59. A. Aslani, V. Oroojpour, M. Fallahi. Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles. Applied Surface Science 257 (2011) 4056-4061. https://doi.org/10.1016/j.apsusc.2010.11.174
60. N. Duraisamy, A. Numan, S.O. Fatin et al. Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application, Journal of Colloid and Interface Science, 471 (2016), 136-144. https://doi.org/10.1016/j.jcis.2016.03.013
61. A. Jafari, S. P. Jahromi, K. Boustani. Evolution of structural and magnetic properties of nickel oxide nanoparticles: Influence of annealing ambient and temperature. Journal of Magnetism and Magnetic Materials 469 (2019) 383-390. https://doi.org/10.1016/j.jmmm.2018.08.005
62. P. Bose, S. Ghosh, S. Basak et al. A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. Journal of Asian Ceramic Societies 4 (2016) 1-5. https://doi.org/10.1016/jjascer.2016.01.006
63. L. Gaik Teoh and Kun-Dar Li. Synthesis and Characterization of NiO Nanoparticles by Sol Gel Method. Materials Transactions 53 (2012) 2135-2140. https://doi.org/10.2320/matertrans.M2012244
64. S. P. Jahromi, N. M. Huang, M. R. Muhamad et al. Green gelatine-assisted sol-gel synthesis of ultrasmall nickel oxide nanoparticles. Ceramics International 39 (2013) 3909-3914. https://doi.org/10.1016/j.ceramint.2012.10.237
65. A. S. Danial, M. M. Saleh b, S. A. Salih. On the synthesis of nickel oxide nanoparticles by sol-gel technique and its electrocatalytic oxidation of glucose. Journal of Power Sources 293 (2015) 101-108. https://doi.org/10.1016/j.jpowsour.2015.05.024
66. Y. Wu, Y. He, T. Wu et al. Influence of some parameters on the synthesis of nanosized NiO material by modified solgel method. Materials Letters 61 (2007) 3174-3178. https://doi.org/10.1016/j.matlet.2006.11.018
67. S. R. Nalage, M. A. Chougule, S. Sen et al. Sol-gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 520 (2012) 4835-4840. https://doi.org/10.1016/j.tsf.2012.02.072
68. T. T. Le Dang, M. Tonezzer, Polycrystalline NiO nanowires: scalable growth and ethanol sensing, Procedia Engineering 120 (2015) 427-434. https://doi.org/10.1016/j.proeng.2015.08.658
69. M. A. Shah. A Versatile Route for the Synthesis of Nickel Oxide Nanostructures Without Organics at Low Temperature. Nanoscale Res Lett (2008) 3:255-259. https://doi.org/10.1007/s11671-008-9147-z
70. X. Zhang, W. Shi, J. Zhu et al. Synthesis of Porous NiO Nanocrystals with Controllable Surface Area and Their Application as Supercapacitor Electrodes. Nano Res. 2010, 3(9): 643-652. https://doi.org/10.1007/s12274-010-0024-6
71. M. Carbone, E. M. Bauer, L. Micheli. NiO morphology dependent optical and electrochemical properties, Colloids and Surfaces A 532 (2017) 178-182. https://doi.org/10.1016/j.colsurfa.2017.05.046
72. S. Liu, W. Zeng, T. Chen. Synthesis of hierarchical flower-like NiO and the influence of surfactant. Physica E, 85 (2017) 13-18. https://doi.org/10.1016/j.physe.2016.08.016
73. A. Santhoshkumar, H. P. Kavitha, R. Suresh, Hydrothermal Synthesis, Characterization and Antibacterial Activity of NiO Nanoparticles, Journal of Advanced Chemical Sciences 2(2) (2016) 230-232.
74. T. Lai, Y. Lai, J. Yu et al. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide. Materials Research Bulletin 44 (2009) 2040-2044. https://doi.org/10.1016/j.materresbull.2009.04.017
75. V. Rajendran, K. Anandan. Different ionic surfactants assisted solvothermal synthesis of zero-, three and onedimensional nickel oxide nanostructures and their optical properties, Materials Science in Semiconductor Processing 38 (2015) 203-208. https://doi.org/10.1016/j.mssp.2015.03.058
76. L. Wang, Y. Zhao, Q. Lai et al. Preparation of 3D roselike NiO complex structure and its electrochemical property, Journal of Alloys and Compounds 495 (2010) 82-87. https://doi.org/10.1016/j.jallcom.2010.01.091
77. Y. Jiang, Z. Jia, W. Zhang et al. In Situ Hydrothermal Synthesis of Nickel Oxide Nanostructures by Thermal Decomposition and its Electrochemical Property. J. Inorg. Organomet Polym. (2013) 23:1043-1047. https://doi.org/10.1007/s10904-013-9877-y
Рецензия
Для цитирования:
Маммадьярова С.Д. МЕТОДЫ СИНТЕЗА НАНОСТРУКТУР ОКСИДА НИКЕЛЯ - КРАТКИЙ ОБЗОР. Вестник НЯЦ РК. 2021;(1):73-81. https://doi.org/10.52676/1729-7885-2021-1-73-81
For citation:
Mammadyarova S.J. THE SYNTHESIS METHODS OF NICKEL OXIDE NANOSTRUCTURES - A BRIEF REVIEW. NNC RK Bulletin. 2021;(1):73-81. https://doi.org/10.52676/1729-7885-2021-1-73-81