КРАТКИЙ ОБЗОР СИНТЕЗА, СВОЙСТВ И ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ЛЕГИРОВАННЫХ И НЕЛЕГИРОВАННЫХ ЦИНКСОДЕРЖАЩИХ СЛОИСТЫХ ДВОЙНЫХ ГИДРОКСИДОВ
Аннотация
В последнее время слоистые двойные гидроксиды (СДГ) были разработаны для применений в различных областях промышленности. В литературе рассмотрено множество методов синтеза СДГ и их классификация по изменению свойств. Однако изменение свойства методом синтеза происходит не во всех СДГ одинаково. Также при синтезе СДГ одинакового состава одним и тем же методом синтеза возможно получение СДГ с одинаковым составом, но разными свойствами за счет изменения параметров реакции. В последнее время легирование полупроводниковых нанокомпозитов атомами различных элементов привело к появлению новых свойств. Влияние элементов, используемых в процессе легирования, на свойства цинксодержащих СДГ исследовано и объяснено в обзорной статье. Методы синтеза отличаются друг от друга параметрами реакций и влияют на кристаллическую структуру, физико-химические свойства и морфологию СДГ. В обзорной статье показано обнаружение дополнительных влияний процессов легирования и природы легирующих элементов на свойства цинксодержащих СДГ, процедуры синтеза и определение параметров реакции. Редкоземельные элементы не выбираются в качестве трехвалентных металлов для основной структуры СДГ, их в основном замещают трехвалентными металлами (Al, Cr, Ti, Fe(III)) в качестве легирующих примесей из-за ионного радиуса и различных свойств.
Ключевые слова
Список литературы
1. Saleh T.A. (2020) Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology and Innovation 20:. https://doi.org/10.1016/j.eti.2020.101067
2. Nicolosi V., Chhowalla M., Kanatzidis M.G., Strano M.S., Coleman J.N. (2013) Liquid exfoliation of layered materials. Science (80- ) 340:. https://doi.org/10.1126/science.1226419
3. Hu T., Mei X., Wang Y., Weng X., Liang R., Wei M. (2019) Two-dimensional nanomaterials: fascinating materials in biomedical field. Science Bulletin64:1707– 1727. https://doi.org/10.1016/j.scib.2019.09.021
4. Yang B., Cai J., Wei S., Nie N., Liu J. (2020) Preparation of Chitosan/NiFe-layered double hydroxides composites and its fenton-like catalytic oxidation of phenolic compounds. Journal of Polymers and the Environment28:343– 353. https://doi.org/10.1007/s10924-019-01614-9
5. Mohapatra L., Parida K., Satpathy M. (2012) Molybdate/tungstate intercalated oxo-bridged Zn/Y LDH for solar light induced photodegradation of organic pollutants. Journal of Physical Chemistry C 116:13063– 13070. https://doi.org/10.1021/jp300066g
6. Chen Y., Ouyang Y., Yang J., Zheng L., Chang B., Wu C., Guo X., Chen G., Wang X. (2021) Facile Preparation and Performances of Ni, Co, and Al Layered Double Hydroxides for Application in High-Performance Asymmetric Supercapacitors. ACS Applied Energy Materials. https://doi.org/10.1021/acsaem.1c01575
7. Zhu K., Wang Y., Tang D., Wang Q., Li H., Huang Y., Huang Z., Wu K. (2019) Flame-retardant mechanism of layered double hydroxides in asphalt binder. Materials 12:. https://doi.org/10.3390/MA12050801
8. Dou Y., Pan T., Zhou A., Xu S., Liu X., Han J., Wei M., Evans D.G.,Duan X. (2013) Reversible thermally-responsive electrochemical energy storage based on smart LDH@P(NIPAM-co-SPMA) films. Chemical Communications 49:8462–8464. https://doi.org/10.1039/c3cc43039a
9. Das A.K., Pan U.N., Sharma V., Kim N.H., Lee J.H.(2021) Nanostructured CeO2/NiV–LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst. Chemical Engineering Journal 417:. https://doi.org/10.1016/j.cej.2020.128019
10. Costantino U., Vivani R., Bastianini M., Costantino F., Nocchetti M. (2014) Ion exchange and intercalation properties of layered double hydroxides towards halide anions. Dalton Transactions 43:11587–11596. https://doi.org/10.1039/c4dt00620h
11. Zou W., Guo W., Liu X., Luo Y., Ye Q., Xu X., Wang, F. (2018) Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration.Chemistry A European Journal 24: 19309–19316. https://doi.org/10.1002/chem.201804218
12. Jin W., Park D.H. (2019) Functional layered double hydroxide nanohybrids for biomedical imaging. Nanomaterials 9:. https://doi.org/10.3390/nano9101404
13. Yan L., Gonca S., Zhu G., Zhang W., Chen X. (2019) Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B. 7:5583–5601. https://doi.org/10.1039/c9tb01312a
14. Baig N., Sajid M. (2017) Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review. Trends in Environmental Analytical Chemistry. 16:1–15. https://doi.org/10.1016/j.teac.2017.10.003
15. Cui J., Li Z., Wang G., Guo J., Shao M. (2020) Layered double hydroxides and their derivatives for lithium-sulfur batteries. Journal of Materials Chemistry A. 8:23738– 23755. https://doi.org/10.1039/d0ta08573a
16. Liu Q., Han X., Park H., Kim J., Xiong P., Yuan H., Yeon J.S., Kang Y., Park J.M., Dou Q., Kim B.K., Park H.S. (2021) Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium-Sulfur Batteries. ACS Applied Materials and Interfaces 13:17978–17987. https://doi.org/10.1021/acsami.1c00974
17. Bukhtiyarova M.V. (2019) A Review on Effect of Synthesis Conditions on the Formation of Layered Double Hydroxides. Journal of Solid State Chemistry, 269, 494– 506. https://doi.org/10.1016/j.jssc.2018.10.018.
18. Duan M., Liu S., Jiang Q., Guo X., Zhang J. and Xiong S. (2022) Recent Progress on Preparation and Applications of Layered Double Hydroxides. Chinese Chemical Letters, 33, 4428–4436. https://doi.org/10.1016/j.cclet.2021.12.033.
19. Huang Y., Liu C., Rad S., He H. and Qin L. (2022) A Comprehensive Review of Layered Double HydroxideBased Carbon Composites as an Environmental Multifunctional Material for Wastewater Treatment. Processes, 10, 617. https://doi.org/10.3390/pr10040617
20. Balayeva O.O, Azizov A.A, Muradov M.B, Alosmanov R.M, Eyvazova G.M, Mammadyarova S.J. (2019) Cobalt chromium-layered double hydroxide, α- and β- Co(OH)2 and amorphous Cr(OH)3: synthesis, modification and characterization. Heliyon 5:. https://doi.org/10.1016/j.heliyon.2019.e02725
21. Srankó D., Pallagi A., Kuzmann E., Canton S.E., Walczak M., Sápi A., Kukovecz Á., Kónya Z., Sipos P., Pálinkó I. (2010) Synthesis and properties of novel Ba(II)Fe(III) layered double hydroxides. Applied Clay Science 48:214– 217. https://doi.org/10.1016/j.clay.2009.11.028
22. Barrett M., McNamara M., Hao H.X., Barrett P., Glennon B. (2010) Supersaturation tracking for the development, optimization and control of crystallization processes. Chemical Engineering Research and Design. 88:1108– 1119. https://doi.org/10.1016/j.cherd.2010.02.010
23. Clause O., Gazzano M., Trifiro F., Vaccari A., Zatorski L. (1991) Preparation and thermal reactivity of nickel/chromium and nickel/aluminium hydrotalcite-type precursors. Applied Catalysis 73:217–236. https://doi.org/10.1016/0166-9834(91)85138-L
24. Hibino T., Ohya H. (2009) Synthesis of crystalline layered double hydroxides: Precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions. Applied Clay Science 45:123–132. https://doi.org/10.1016/j.clay.2009.04.013
25. Liu J., Song J., Xiao H., Zhang L., Qin Y., Liu D.,et al (2014) Synthesis and thermal properties of ZnAl layered double hydroxide by urea hydrolysis. Powder Technology 253:41–45. https://doi.org/10.1016/j.powtec.2013.11.007
26. Balayeva O.O. (2022) Synthesis and characterization of zinc-aluminum based layered double hydroxide and oxide nanomaterials by performing different experimental parameters. Journal of Dispersion Science and Technology 43:1187–1196. https://doi.org/10.1080/01932691.2020.1848580
27. Oh J.M., Hwang S.H., Choy J.H. (2002) The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151:285–291. https://doi.org/10.1016/S0167-2738(02)00725-7
28. Rao M.M., Reddy B.R., Jayalakshmi M., Jaya V.S., Sridhar B. (2005) Hydrothermal synthesis of Mg-Al hydrotalcites by urea hydrolysis. Materials Research Bulletin 40:347–359. https://doi.org/10.1016/j.materresbull.2004.10.007
29. Newman S.P., Jones W. (1998) Synthesis, characterization and applications of layered double hydroxides containing organic guests. New Journal of Chemistry 22:105–115. https://doi.org/10.1039/a708319j
30. Conterosito E., Gianotti V., Palin L., Boccaleri E., Viterbo D., Milanesio M. (2018) Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. InorganicaChimica Acta 470:36–50. https://doi.org/10.1016/j.ica.2017.08.007
31. Ay A.N., Zümreoglu-Karan B., Mafra L (2009) A simple mechanochemical route to layered double hydroxides: synthesis of hydrotalcite-like Mg-Al-NO3-LDH by Manual Grinding in a Mortar. Zeitschrift fur Anorganische und Allgemeine Chemie 635:1470–1475. https://doi.org/10.1002/zaac.200801287
32. Ibrahimova K.A., Azizov A.A., Balayeva O.O., Alosmanov R.M., Mammadyarova S.C. (2021) Mechanochemical synthesis of PbS/Ni–Cr layered double hydroxide nanocomposite. Mendeleev Communications 31:100–103. https://doi.org/10.1016/j.mencom.2021.01.031
33. Kowalik P., Konkol M., Kondracka M., Próchniak W., Bicki R., Wiercioch P. (2013) Memory effect of the CuZnAl-LDH derived catalyst precursor - In situ XRD studies. Applied Catalysis A: General 464–465:339–347. https://doi.org/10.1016/j.apcata.2013.05.048
34. Kostura B., Kovanda F., Valášková M., Leško J. (2007) Rehydration of calcined Mg-Al hydrotalcite in acidified chloride-containing aqueous solution. Collection of Czechoslovak Chemical Communications 72:1284–1294. https://doi.org/10.1135/cccc20071284
35. Rocha J., Del Arco M., Rives V., Ulibarri M.A. (1999) Reconstruction of layered double hydroxides from calcined precursors: A powder XRD and 27A1 MAS NMR study. Journal of Materials Chemistry 9:2499–2503. https://doi.org/10.1039/a903231b
36. Zadaviciute S., Baltakys K., Bankauskaite A. (2017) The effect of microwave and hydrothermal treatments on the properties of hydrotalcite: A comparative study. Journal of Thermal Analysis and Calorimetry 127:189–196. https://doi.org/10.1007/s10973-016-5593-5
37. Genty E., Brunet J., Poupin Ch., Casale S.,Capelle S., Massiani P., Siffert S., Cousin R. (2015) Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation. Catalysts. 5: 851–867. https://doi.org/10.3390/catal5020851
38. Liu Y., Yang Z. (2016) Intercalation of sulfate anions into a Zn-Al layered double hydroxide: Their synthesis and application in Zn-Ni secondary batteries. RSC Advances 6:68584–68591. https://doi.org/10.1039/c6ra09096f
39. Mikhailau A., Maltanava H., Poznyak S.K., Salak A.N., Zheludkevich M.L., Yasakau K.A., Ferreira M.G.S. (2019) One-step synthesis and growth mechanism of nitrate intercalated ZnAl LDH conversion coatings on zinc. Chemical Communications 55:6878–6881. https://doi.org/10.1039/c9cc02571e
40. Li Y., Li S., Zhang Y., Yu M., Liu J. (2015) Enhanced protective Zn-Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy. Journal of Alloys and Compounds 630:29–36. https://doi.org/10.1016/j.jallcom.2014.12.176
41. Ahmed A.A.A., Talib Z.A., Bin Hussein M.Z., Zakaria A. (2012) Zn-Al layered double hydroxide prepared at different molar ratios: Preparation, characterization, optical and dielectric properties. Journal of Solid State Chemistry 191:271–278. https://doi.org/10.1016/j.jssc.2012.03.013
42. Xia S., Qian M., Zhou X., Meng Y., Xue J., Ni Z. (2017) Theoretical and experimental investigation into the photocatalytic degradation of hexachlorobenzene by ZnCr layered double hydroxides with different anions. Molecular Catalysis 435:118–127. https://doi.org/10.1016/j.mcat.2017.03.024
43. Li D., Fan L., Qi M., Shen Y., Liu D., Li S. (2018) Enhanced visible-light-driven photocatalytic activity of ZnAl layered double hydroxide by incorporation of Co2+. Bulletin of Chemical Reaction Engineering & Catalysis 13:502–511. https://doi.org/10.9767/bcrec.13.3.2168.502-511
44. Li D., Fan L., Shen Y., Qi M., Ali M.R., Liu D., Li S.(2018) Degradation of Rhodamine B Under VisibleLight by Cu-Doped ZnAl Layered Double Hydroxide. Journal of Nanoscience and Nanotechnology 19:1090– 1097. https://doi.org/10.1166/jnn.2019.15741
45. Chuaicham C., Xiong Y., Sekar K., Chen W., Zhang L., Ohtani B., Dabo I., Sasaki K. (2021) A promising Zn-Ti layered double hydroxide/Fe-bearing montmorillonite composite as an efficient photocatalyst for Cr(VI) reduction: Insight into the role of Fe impurity in montmorillonite. Applied Surface Science 546:. https://doi.org/10.1016/j.apsusc.2020.148835
46. Sayler R.I., Hunter B.M., Fu W., Gray H.B., Britt R.D.(2020) EPR Spectroscopy of Iron- and Nickel-Doped ZnAl-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts. Journal of the American Chemical Society 142:1838–1845. https://doi.org/10.1021/jacs.9b10273
47. Morales-Mendoza G., Tzompantzi F., García-Mendoza C., López R., De la Luz V., Lee S.W., Kim T.H., Torres-Martínez L.M., Gómez R. (2015) Mn-doped Zn/Al layered double hydroxides as photocatalysts for the 4-chlorophenol photodegradation. Applied Clay Science 118:38– 47. https://doi.org/10.1016/j.clay.2015.08.030
48. Keyikoglu R., Khataee A., Lin H., Orooji Y. (2022) Vanadium (V)-doped ZnFe layered double hydroxide for enhanced sonocatalytic degradation of pymetrozine. Chemical Engineering Journal 434:. https://doi.org/10.1016/j.cej.2022.134730
49. Khataee A., Arefi-Oskoui S., Samaei L. (2018) ZnFe-Cl nanolayered double hydroxide as a novel catalyst for sonocatalytic degradation of an organic dye. Ultrasonics Sonochemistry 40:703–713. https://doi.org/10.1016/j.ultsonch.2017.08.014
50. Kannadasan N., Shanmugam N., Cholan S., Sathishkumar K., Viruthagiri G., Poonguzhali R. (2014) The effect of Ce4 + incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles. Materials Characterization 97:37–46. https://doi.org/10.1016/j.matchar.2014.08.021
51. Faisal M., Ismail A.A., Ibrahim A.A., Bouzid H., AlSayari S.A. (2013) Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chemical Engineering Journal 229:225–233. https://doi.org/10.1016/j.cej.2013.06.004
52. Chang C.J., Lin C.Y., Hsu M.H. (2014) Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light. Journal of the Taiwan Institute of Chemical Engineers 45:1954–1963. https://doi.org/10.1016/j.jtice.2014.03.008
53. Rezaei M., Habibi-Yangjeh A. (2013) Microwave-assisted preparation of Ce-doped ZnO nanostructures as an efficient photocatalyst. Materials Letters 110:53–56. https://doi.org/10.1016/j.matlet.2013.07.120
54. Seliverstov E.S., Golovin S.N., Lebedeva O.E. (2022) Layered Double Hydroxides Containing Rare Earth Cations: Synthesis and Applications. Frontiers in Chemical Engineering 4:. https://doi.org/10.3389/fceng.2022.867615
55. Suárez-Quezada M., Romero-Ortiz G., Suárez V., Morales-Mendoza G., Lartundo-Rojas L., Navarro-Cerón E., Tzompantzi F., Robles S., Gómez R., Mantilla A.(2016) Photodegradation of phenol using reconstructed Ce doped Zn/Al layered double hydroxides as photocatalysts. Catalysis Today 271:213–219. https://doi.org/10.1016/j.cattod.2016.01.009
56. Zhang Y., Liu J., Li Y., Yu M., Yin X., Li S. (2017) Enhancement of active anticorrosion via Ce-doped Zn-Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy. Journal Wuhan University of Technology, Materials Science Edition 32:1199–1204. https://doi.org/10.1007/s11595-017-1731-6
57. Fu Y., Ning F., Xu S., An H., Shao M., Wei M. (2016) Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance. Journal of Materials Chemistry A 4:3907–3913. https://doi.org/10.1039/c5ta10093c
58. Chen Y., Bao Y., Yang G., Yu Z. (2016) Study on structure and photoluminescence of Tb-doped ZnAl-NO3 layered double hydroxides prepared by co-precipitation. Materials Chemistry and Physics 176:24–31. https://doi.org/10.1016/j.matchemphys.2016.03.012
59. Vargas D.R.M., Oviedo M.J., Da Silva Lisboa F., Wypych F., Hirata G.A., Arizaga G.G.C. (2013) Phosphor dysprosium-doped layered double hydroxides exchanged with different organic functional groups. Journal of Nanomaterials 2013:. https://doi.org/10.1155/2013/730153
60. Chen Y., Zhou S., Li F., Li F., Chen Y. (2011) Photoluminescence of Eu-doped ZnAl-LDH depending on phase transitions caused by annealing temperatures. Journal of Luminescence 131:701–704. https://doi.org/10.1016/j.jlumin.2010.11.021
61. Wen R., Yang Z., Chen H., Hu Y., Duan J. (2012) Zn-AlLa hydrotalcite-like compounds as heating stabilizer in PVC resin. Journal of Rare Earths 30:895–902. https://doi.org/10.1016/S1002-0721(12)60151-3
62. Dinari M., Momeni M.M., Ghayeb Y. (2016) Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visible-light photocatalysts. Journal of Materials Science: Materials in Electronics 27:9861– 9869. https://doi.org/10.1007/s10854-016-5054-8
63. Sarkarat M., Komarneni S., Rezvani Z., Wu X., Yin S.(2013) Multi-cationic layered double hydroxides: Calcined products as photocatalysts for decomposition of NOx. Applied Clay Science 80–81:390–397. https://doi.org/10.1016/j.clay.2013.07.002
64. Gao L.G., Li H.X., Song X.L., Li W.L., Ma X.R. (2019) Degradation of benzothiophene in diesel oil by LaZnAl layered double hydroxide: photocatalytic performance and mechanism. Petroleum Science 16:173–179. https://doi.org/10.1007/s12182-018-0285-3
65. Wani A.A., Khan A.M., Manea Y.K., Salem M.A.S., Shahadat M. (2021) Selective adsorption and ultrafast fluorescent detection of Cr(VI) in wastewater using neodymium doped polyaniline supported layered double hydroxide nanocomposite. Journal of Hazardous Materials 416:. https://doi.org/10.1016/j.jhazmat.2021.125754
66. Huang Y., Liu C., Rad S., He H., Qin L. (2022) A Comprehensive Review of Layered Double HydroxideBased Carbon Composites as an Environmental Multifunctional Material for Wastewater Treatment. Processes 10:. https://doi.org/10.3390/pr10040617
67. Liu X.L. (2013) Non-covalent immobilization of C60 in benzoic acid modified layered double hydroxides. Asian Journal of Chemistry 25:4703–4704. https://doi.org/10.14233/ajchem.2013.13951
68. Bai P., Fan G., Li F. (2011) Novel Zn-Al layered double hydroxide/carbon nanotube nanocomposite for electrochemical determination of catechol and hydroquinone. Materials Letters 65:2330–2332. https://doi.org/10.1016/j.matlet.2011.05.038
69. Guo G., Qin F., Yang D., Wang C., Xu H., Yang S. (2008) Synthesis of platinum nanoparticles supported on poly(acrylic acid) grafted MWNTs and their hydrogenation of citral. Chemistry of Materials 20:2291– 2297. https://doi.org/10.1021/cm703225p
70. Kowsari H., Mehrpooya M., Pourfayaz F. (2020) Nitrogen and sulfur doped ZnAl layered double hydroxide/reduced graphene oxide as an efficient nanoelectrocatalyst for oxygen reduction reactions. International Journal of Hydrogen Energy 45:27129–27144. https://doi.org/10.1016/j.ijhydene.2020.07.068
71. Liting J., Pingxiao W., Qiliang Y., Zubair A., Nengwu Z. (2018) Synthesis of ZnAlTi-LDO supported C60@AgCl nanoparticles and their photocatalytic activity for photodegradation of Bisphenol A. Applied Catalysis B: Environmental 224, 159–174. https://doi.org/10.1016/j.apcatb.2017.10.056
72. Yang J., Jing R., Wang P., Liang D.R., Huang H., Xia C., Zhang, Q., Liu A., Meng Z., Liu Y. (2021) Black phosphorus nanosheets and ZnAl-LDH nanocomposite as environmental-friendly photocatalysts for the degradation of Methylene blue under visible light irradiation. Applied Clay Science 200:. https://doi.org/10.1016/j.clay.2020.105902
73. Babu H.V., Coluccini C., Wang D-Y. (2017) Functional layered double hydroxides and their use in fire-retardant polymeric materials. Novel Fire Retardant Polymers and Composite Materials 201–238. https://doi.org/10.1016/b978-0-08-100136-3.00008-x
74. Li X., Du D., Zhang Y., Xing W., Xue Q., Yan Z. (2017) Layered double hydroxides toward high-performance supercapacitors. Journal of Materials Chemistry A 5:15460–15485. https://doi.org/10.1039/c7ta04001f
75. Balayeva O.O., Azizov A.A., Muradov M.B., Alosmanov R.M. (2021) Removal of tartrazine, ponceau 4R and patent blue V hazardous food dyes from aqueous solutions with ZnAl-LDH/PVA nanocomposite. Journal of Dispersion Science and Technology. https://doi.org/10.1080/01932691.2021.2006688
76. Balayeva N. (2020) Visible-light-driven photocatalytic organic synthesis with surface modified TiO2-composites. Hannover: Gottfried Wilhelm Leibniz Universität, Dissertation, 2020, 173 S. https://doi.org/10.15488/9978
Рецензия
Для цитирования:
Балаева О.О. КРАТКИЙ ОБЗОР СИНТЕЗА, СВОЙСТВ И ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ЛЕГИРОВАННЫХ И НЕЛЕГИРОВАННЫХ ЦИНКСОДЕРЖАЩИХ СЛОИСТЫХ ДВОЙНЫХ ГИДРОКСИДОВ. Вестник НЯЦ РК. 2022;(3):45-54. https://doi.org/10.52676/1729-7885-2022-3-45-54
For citation:
Balayeva O.O. SYNTHESIS, PROPERTIES AND PRACTICAL APPLICATIONS OF DOPED AND UNDOPED, ZINC-CONTAINING LAYERED DOUBLE HYDROXIDES – A BRIEF REVIEW. NNC RK Bulletin. 2022;(3):45-54. https://doi.org/10.52676/1729-7885-2022-3-45-54