Preview

Вестник НЯЦ РК

Расширенный поиск

СИНТЕЗ И СОРБЦИОННО-ФОТОКАТАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ ЛЕГИРОВАНЫХ МЕТАЛЛАМИ НАНОКОМПОЗИТОВ ZnAl- СДГ/ПВС

https://doi.org/10.52676/1729-7885-2022-4-63-73

Аннотация

Двумерные наноструктуры (2D) привлекли значительный интерес и большое внимание в современной науке, благодаря своей большой площади поверхности, электронным свойствам, характеристикам накопления энергии и каталитической активности. Слоистые двойные гидроксиды (СДГ) относятся к двумерным наноструктурам и обладают большой площадью поверхности, очень важными физико-химическими свойствами и биологической активностью. Однако всегда существовал большой интерес к их легированию для усиления и улучшения этих свойств, особенно фотокаталитической активностью. В данной работе были синтезированы СДГ на основе ZnAl и проведено их легирование активными (Ca, Sr), переходными (Co, Cu, Cd, Ni, Pb, Fe), благородными (Ag) и редкоземельными элементами (La) осуществлялись методом пропитки. Также было изучено удаление катионных и анионных красителей из водных растворов путем адсорбции и фотодеградации на свежесинтезированном и легированном нанокомпозите ZnAl-СДГ/ПВС. Полученные результаты сопоставлены со структурой и физикохимическими свойствами нанокомпозитов.

Об авторе

О. О. Балаева
Бакинский государственный университет
Азербайджан

Баку



Список литературы

1. Saleh T.A. Nanomaterials: Classification, properties, and environmental toxicities // Environmental Technology & Innovation. – 2020. – Vol 20:101067. https://doi.org/10.1016/j.eti.2020.101067

2. Liu Z., Navik R., Tan H., et al. Graphene-based materials prepared by supercritical fluid technology and its application in energy storage // The Journal of Supercritical Fluids. – 2022. – Vol. 188:105672. https://doi.org/10.1016/j.supflu.2022.105672

3. Mirzaei A., Oum W., Ham H., et al. Catalyst and substrate-free synthesis of graphene nanosheets by unzipping C60 fullerene clusters using a pulse current method // Materials Science in Semiconductor Processing. – 2022. – Vol. 149:106831. https://doi.org/10.1016/j.mssp.2022.106831

4. Isseroff R., Blackburn L., Chen A., et al. (2016) Synthesis and Characterization of Partially Reduced Graphene Oxide and Platinum and Gold Partially Reduced Graphene Oxide // MRS Advances. – 2016. – Vol. 1. – PP. 1345–1351. https://doi.org/10.1557/adv.2016.89

5. Zhou H., Jiresse N.K.L., Zhang W., et al. MXene-derived TiO2/MXene-loaded Ag for the degradation of the methyl orange // Journal of Materials Research. – 2021. – Vol. 36. – PP. 5002–5012. https://doi.org/10.1557/s43578-021-00428-7

6. Preschilla N., Rasheed A.S.A., Sahadevan S., et al. (2010) Study of layered silicate clays as synergistic nucleating agent for polypropylene // Journal of Polymer Science Part B: Polymer Physics. – 2010. – Vol. 48. – PP. 1786–1794. https://doi.org/10.1002/polb.22044

7. Jaiswal A., Gautam R.K., Chattopadhyaya M.C. Layered Double Hydroxides and the Environment: An Overview // Advanced Materials for Agriculture, Food, and Environmental Safety. – 2014. – Vol. 9781118773437. – PP. 1–26. https://doi.org/10.1002/9781118773857.ch1

8. Jiang J.Q., Ashekuzaman S.M. Preparation and evaluation of layered double hydroxides (LDHs) for phosphate removal // Desalination and Water Treatment. – 2015. – Vol. 55. – PP. 836–843. https://doi.org/10.1080/19443994. 2014.934734

9. Zhang H., Balaji Y., Nalin Mehta A., et al. (2018) Formation mechanism of 2D SnS2 and SnS by chemical vapor deposition using SnCl4 and H2S // Journal of Materials Chemistry C. – 2018. Vol. 6. – PP. 6172–6178. https://doi.org/10.1039/c8tc01821a

10. Li X., Zhu H. Two-dimensional MoS2: Properties, preparation, and applications // Journal of Materiomics. – 2015. – Vol. 1. – PP. 33–44. https://doi.org/10.1016/j.jmat.2015.03.003

11. Lashgari H., Boochani A., Shekaari A., et al. (2016) Electronic and optical properties of 2D graphene-like ZnS: DFT calculations // Applied Surface Science. – 2016. – Vol. 369. – PP. 76–81. https://doi.org/10.1016/j.apsusc.2016.02.042

12. Zhao Y., Liu N., Zhou S., Zhao J. (2019) Two-dimensional ZnO for the selective photoreduction of CO2 // Journal of Materials Chemistry A. – 2019. – Vol. 7. – PP. 16294– 16303. https://doi.org/10.1039/c9ta04477a

13. Wang G., Zhi Y., Xia L., et al. 2D CdO-Based Hetero-structure as a Promising Visible Light Water-Splitting Photocatalyst // Physica Status Solidi (A) Applications and Materials Science. – 2020. – Vol. 217:1900859. https://doi.org/10.1002/pssa.201900859

14. Ji J., Song X., Liu J., et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy // Nature Communications. – 2016. – Vol. 7:13352. https://doi.org/10.1038/ncomms13352

15. Nicolosi V., Chhowalla M., Kanatzidis M.G., et al. Liquid exfoliation of layered materials // Science. – 2013. –Vol. 340, Issue. 6139. – P. 1226419. https://doi.org/10.1126/science.1226419

16. Hu T., Mei X., Wang Y., et al. Two-dimensional nanomaterials: fascinating materials in biomedical field // Science Bulletin. – 2019. – Vol. 64. – PP. 1707–1727. https://doi.org/10.1016/j.scib.2019.09.021

17. Yang B., Cai J., Wei S., et al. Preparation of Chitosan/ NiFe-layered double hydroxides composites and its fenton-like catalytic oxidation of phenolic compounds // Journal of Polymers and the Environment. – 2020. – Vol. 28. – PP. 343–353. https://doi.org/10.1007/s10924-019-01614-9

18. Mohapatra L., Parida K., Satpathy M. Molybdate/tungstate intercalated oxo-bridged Zn/Y LDH for solar light induced photodegradation of organic pollutants // The Journal of Physical Chemistry C. – 2012. – Vol. 116. – PP. 13063– 13070. https://doi.org/10.1021/jp300066g

19. Xia S., Qian M., Zhou X., et al. Theoretical and experimental investigation into the photocatalytic degradation of hexachlorobenzene by ZnCr layered double hydroxides with different anions // Molecular Catalysis. – 2017. – Vol. 435. – PP. 118–127. https://doi.org/10.1016/j.mcat.2017.03.024

20. Chen Y., Ouyang Y., Yang J., et al. Facile Preparation and Performances of Ni, Co, and Al Layered Double Hydroxides for Application in High-Performance Asymmetric Supercapacitors // ACS Applied Energy Materials. – 2021. – Vol. 4, Issue. 9. – PP. 9384–9392. https://doi.org/10.1021/acsaem.1c01575

21. Li X., Du D., Zhang Y., et al. Layered double hydroxides toward high-performance supercapacitors // Journal of Materials Chemistry A. – 2017. Vol. 5. – PP. 15460– 15485. https://doi.org/10.1039/c7ta04001f

22. Babu H.V., Coluccini C., Wang D-Y. Functional layered double hydroxides and their use in fire-retardant polymeric materials // Novel Fire Retardant Polymers and Composite Materials. – 2017. PP. 201–238. https://doi.org/10.1016/b978-0-08-100136-3.00008-x

23. Zhu K., Wang Y., Tang D., et al. Flame-retardant mechanism of layered double hydroxides in asphalt binder / Materials (Basel). – 2019. – Vol. 12(5):801. https://doi.org/10.3390/MA12050801

24. Dou Y., Pan T., Zhou A., et al. (2013) Reversible thermally-responsive electrochemical energy storage based on smart LDH@P(NIPAM-co-SPMA) films / Chemical Communications. – 2013. – Vol. 49. – PP. 8462–8464. https://doi.org/10.1039/c3cc43039a

25. Das A.K., Pan U.N., Sharma V., et al. Nanostructured CeO2/NiV–LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst / Chemical Engineering Journal. – 2021. – Vol. 417:128019. https://doi.org/10.1016/j.cej.2020.128019

26. Costantino U., Vivani R., Bastianini M., et al. Ion exchange and intercalation properties of layered double hydroxides towards halide anions / Dalton Transactions. – 2014. – Vol. 43. – P. 11587–11596. https://doi.org/10.1039/c4dt00620h

27. Zou W., Guo W., Liu X., et al. Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration // Chemistry – A European Journal. – 2018. – Vol. 24. – P. 19309–19316. https://doi.org/10.1002/chem.201804218

28. Jin W., Park D.H. Functional layered double hydroxide nanohybrids for biomedical imaging // Nanomaterials. –2019. – Vol. 9(10):1404. https://doi.org/10.3390/nano9101404

29. Yan L., Gonca S., Zhu G., et al. Layered double hydroxide nanostructures and nanocomposites for biomedical applications // Journal of Materials Chemistry B. – 2019. – Vol. 7. – PP. 5583–5601. https://doi.org/10.1039/c9tb01312

30. Baig N., Sajid M. Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review // Trends in Environmental Analytical Chemistry. – 2017. Vol. 16. – PP. 1–15. https://doi.org/10.1016/j.teac.2017.10.003

31. Zhao Q., Wang M., Yang H., Shi D., Wang Y. Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders // Ceramics International. – 2018. Vol. 44(5). PP. 5145-5154.

32. Guayaquil-Sosa J.F., Serrano-Rosales B., Valadés-Pelayo P.J., de Lasa H. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt // Applied Catalysis B: Environmental. – 2017. – Vol. 211. – PP. 337–348.

33. Balayeva O.O. Synthesis and characterization of zincaluminum based layered double hydroxide and oxide nanomaterials by performing different experimental parameters // Journal of Dispersion Science and Technology. – 2022. – Vol. 43. – PP. 1187–1196. https://doi.org/10.1080/01932691.2020.1848580

34. Chuaicham C, Xiong Y, Sekar K, et al. A promising Zn-Ti layered double hydroxide/Fe-bearing montmorillonite composite as an efficient photocatalyst for Cr(VI) reduction: Insight into the role of Fe impurity in montmorillonite // Applied Surface Science. – 2021. – Vol. 546: 148835. https://doi.org/10.1016/j.apsusc.2020.148835

35. Sayler RI, Hunter BM, Fu W, et al. EPR Spectroscopy of Iron- and Nickel-Doped [ZnAl]-Layered Double Hydroxides: Modeling Active Sites in Heterogeneous Water Oxidation Catalysts // Journal of the American Chemical Society. – 2020. – Vol. 142. PP. 1838–1845. https://doi.org/10.1021/jacs.9b10273

36. Morales-Mendoza G, Tzompantzi F, García-Mendoza C, et al. (2015) Mn-doped Zn/Al layered double hydroxides as photocatalysts for the 4-chlorophenol photodegradation // Applied Clay Science. – 2015. – Vol. 118. – PP. 38–47. https://doi.org/10.1016/j.clay.2015.08.030

37. Zhang Y., Liu J., Li Y., et al. Enhancement of active anticorrosion via Ce-doped Zn-Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy // The Journal of Wuhan University of Technology-Mater. Sci. Ed. – 2017. – Vol. 32. – PP. 1199–1204. https://doi.org/10.1007/s11595-017-1731-6

38. Fu Y., Ning F., Xu S., et al. Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance // Journal of Materials Chemistry A. – 2016. – Vol. 4. – PP. 3907–3913. https://doi.org/10.1039/c5ta10093c

39. Wen R., Yang Z., Chen H., et al. Zn-Al-La hydrotalcitelike compounds as heating stabilizer in PVC resin // Journal of Rare Earths. – 2012. – Vol. 30. – PP. 895–902. https://doi.org/10.1016/S1002-0721(12)60151-3

40. Dinari M., Momeni M.M., Ghayeb Y. Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visible-light photocatalysts // Journal of Materials Science: Materials in Electronics. – 2016. – Vol. 27. – PP. 9861– 9869. https://doi.org/10.1007/s10854-016-5054-8

41. Kappertz O., Drese R., Wuttig M. Correlation between Structure, Stress and Deposition Parameters in Direct Current Sputtered Zinc Oxide Films // Journal of Vacuum Science & Technology A. – 2002. – Vol. 20:2084. https://doi.org/10.1116/1.1517997

42. Banerjee, S.; Chattopadhyaya, M. C. Adsorption Characteristics for the Removal of a Toxic Dye.; Tartrazine from Aqueous Solutions by a Low Cost Agricultural by-Product // Arabian Journal of Chemistry. – 2017. – Vol. 10(2). –PP. S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005

43. Balayeva O.O., Azizov A.A., Muradov M.B., Alosmanov R.M. Removal of tartrazine, ponceau 4R and patent blue V hazardous food dyes from aqueous solutions with ZnAl-LDH/PVA nanocomposite // Journal of Dispersion Science and Technology. – 2021. – PP. 1–14. https://doi.org/10.1080/01932691.2021.2006688

44. Liu Sh., Min Z., Hu D., Liu Y. Synthesis of calcium doped TiO2 nanomaterials and their visible light degradation property. International Conference on Material and Environmental Engineering (ICMAEE 2014). https://doi.org/10.2991/icmaee-14.2014.12

45. Seliverstov E.S., Golovin S.N., Lebedeva O.E. (2022) Layered Double Hydroxides Containing Rare Earth Cations: Synthesis and Applications // Frontiers in Chemical Engineering. – 2022. – Vol. 4. https://doi.org/10.3389/fceng.2022.867615

46. Gao L.G., Li H.X., Song X.L., et al. Degradation of benzothiophene in diesel oil by LaZnAl layered double hydroxide: photocatalytic performance and mechanism // Petroleum Science. – 2019. Vol. 16. – PP. 173–179. https://doi.org/10.1007/s12182-018-0285-3

47. Balayeva O.O. Photocatalytic degradation of Ponceau 4R by ZnAl-layered double hydroxide nanostructures obtained with and without polyvinyl alcohol // Journal of the Chinese Chemical Society. – 2022. – Vol. 69, Issue 9. – PP. 1594–1607. https://doi.org/10.1002/jccs.202200121

48. Bouarroudj T., Aoudjit L., Djahida L., Zaidi B., Ouraghi M., Zioui D., Mahidine S., Shekhar C. and Bachari K. Photodegradation of tartrazine dye favored by natural sunlight on pure and (Ce, Ag) co-doped ZnO catalysts // Water Science & Technology. – 2021. – Vol. 83, Issue 9. – PP. 2118–2134. https://doi.org/10.2166/wst.2021.106

49. Chen Y., Yang S., Wang K., Lou L. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7 // Journal of Photochemistry and Photobiology A: Chemistry. – 2005. – Vol. 172. PP. 47–54. https://doi.org/10.1016/j.jphotochem.2004.11.006.

50. Fujishima A., Zhang X., Tryk D., TiO2 photocatalysis and related surface phenomena // Surface Science Reports. – 2008. – Vol. 63. – PP. 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

51. Kumaran N.N., Muraleedharan K. Photocatalytic activity of ZnO and Sr2+ doped ZnO nanoparticles // Journal of Water Process Engineering. – 2017. – Vol. 17. – PP. 264– 270. https://doi.org/10.1016/j.jwpe.2017.04.014.

52. Ani I.J., Akpan U.G., Olutoye M.A., Hameed B.H. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development // Journal of Cleaner Production. – 2018. – Vol. 205. – PP. 930–954. https://doi.org/10.1016/j.jclepro.2018.08.189

53. Lin Y.Y., Chi H.T., Lin J.H., Chen F.H., Chen C.C., Lu C.S. Eight crystalline phases of bismuth vanadate by controllable hydrothermal synthesis exhibiting visible-light-driven photocatalytic activity // Molecular Catalysis. –2021. – Vol. 506:111547. https://doi.org/10.1016/j.mcat.2021.111547


Рецензия

Для цитирования:


Балаева О.О. СИНТЕЗ И СОРБЦИОННО-ФОТОКАТАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ ЛЕГИРОВАНЫХ МЕТАЛЛАМИ НАНОКОМПОЗИТОВ ZnAl- СДГ/ПВС. Вестник НЯЦ РК. 2022;(4):63-73. https://doi.org/10.52676/1729-7885-2022-4-63-73

For citation:


Balayeva O.O. SYNTHESIS OF DIFFERENT METAL DOPED ZnAl-LDH/PVA NANOCOMPOSITES FOR ADSORPTION AND PHOTOCATALYTIC APPLICATIONS. NNC RK Bulletin. 2022;(4):63-73. https://doi.org/10.52676/1729-7885-2022-4-63-73

Просмотров: 271


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)