RADIATION DEFECTS IN ZrO2 NANOSTRUCTURAL COMPACTS IRRADIATED BY ELECTRON AND ION BEAMS
https://doi.org/10.52676/1729-7885-2023-2-42-48
Abstract
The thermoluminescence (TL) and EPR spectra of nanostructured compacts of monoclinic ZrO2 irradiated by three types of irradiation have been studied: impulse flow of 130 keV electrons, beam of 10 MeV electrons, as well as a 220 MeV Xe ion beam. Irradiation of samples with 10 MeV electrons and ions leads to the formation of F+ centers in them. Thermal destruction of these centers is observed in the temperature range 375–550 K for electron-irradiated compacts and 500– 700 K for ion-irradiated compacts. The drop in the concentration of F+ centers is associated with the depletion of traps responsible for TL peaks in the specified temperature range. In samples irradiated with an ion beam, new paramagnetic centers with g = 1.963 and 1.986 were found, in the formation of which, probably, Zr3+ ions and oxygen vacancies participate, thermal destruction occurs in the temperature range 500–873 K.
About the Authors
A. DauletbekovaKazakhstan
Astana
S. Nikiforov
Russian Federation
Yekaterinburg
D. Ananchenko
Russian Federation
Yekaterinburg
G. Aralbayeva
Kazakhstan
Astana
G. Akhmetova-Abdik
Kazakhstan
Astana
References
1. Schulz U., Leyens C., Fritscher K., Peters M., Saruhan-Brings B., Lavigne O., Dorvaux J.-M., Poulain M., Mévrel R., Caliez M. Some recent trends in research and technology of advanced thermal barrier coatings // Aerosp. Sci. Technol. – 2003. - V.7(1). – Р.73-80.
2. Wu J., Wei X., Padture N. P., Klemens P. G., Gell M., García E., Miranzo P., Osendi M. I. Low‐thermal‐conductivity rare‐earth zirconates for potential thermal‐barrier‐coating applications // J. Am. Ceram. Soc. – 2002. – V. 85 (12). – Р. 3031-3035.
3. Arachi Y., Sakai H., Yamamoto O., Takeda, Y. Imanishai N. Electrical conductivity of the ZrO2–Ln2O3 (Ln= lanthanides) system // Solid State Ion. – 1999. – V.121
4. (1-4). -Р. 133-139.
5. Chen F., Wu Y. R., Wu J. M., Zhu H., Chen S., Hua S. B., He Z.X., Chang Y.L., Xiao J., Shi Y. S. Preparation and characterization of ZrO2-Al2O3 bioceramics by stereolithography technology for dental restorations // Addit. Manuf. – 2021. – V. 44. - Р. 102055.
6. Kelly J. R., Denry I. Stabilized zirconia as a structural ceramic: an overview // Dent Mater. – 2008. – V. 24 (3). – Р. 289-298.
7. Yu X., Marks T. J., Facchetti A. Metal oxides for optoelectronic applications // Nat. Mater. – 2016. -V. 15 (4). – Р. 383-396.
8. Buzynin A. N., Grishina T. N., Kiselyov T. V., Kosuhina L. A., Kravchenko N. V., Lomonova E. E. Panov, V.A. Sidorov, M.S. Trishenkov
9. M. A., Filachev A.M. Zirconia-based solid solutions - New materials of photoelectronics // Opt. Mem. Neural Netw. -2009. -V. 18(4). - Р.312-321
10. Costantini J. M., Beuneu F. Threshold displacement energy in yttria‐stabilized zirconia // Phys. Status Solidi. – 2007. – V. 4(3). - Р. 1258-1263
11. Evans B. D., Pogatshnik G. J., Chen Y. Optical properties of lattice defects in α-Al2O3 // Nucl. Instrum. Methods Phys. Res. – 1994. - V. 91(1-4). – Р. 258-262.
12. Monge M. A., Gonzalez R., Santiuste J. M., Pareja R., Chen Y., Kotomin E. A., Popov A. I. Photoconversion and dynamic hole recycling process in anion vacancies in neutron-irradiated MgO crystals // Phys. Rev. – 1999. – V. 60(6). – Р. 3787.
13. Zhao Q., Wang X., Cai T. The study of surface properties of ZrO2 // Appl. Surf. Sci. – 2004. – V. 225(1-4). – Р. 7-13.
14. Lokesha H. S., Chithambo M. L. A combined study of the thermoluminescence and electron paramagnetic resonance of point defects in ZrO2: Er3+ // Radiat. Phys. Chem. – 2020. – V. 172. – Р. 108767.
15. Gionco C., Paganini M. C., Giamello E., Burgess R., Di Valentin C., Pacchioni G. Paramagnetic defects in polycrystalline zirconia: an EPR and DFT study // Chem. Mater. – 2013. – V. 25(11). – Р. 2243-2253.
16. Costantini J. M., Beuneu F., Gourier D., Trautmann C., Calas G., Toulemonde M. Colour centre production in yttria-stabilized zirconia by swift charged particle irradiations // J. Phys. Condens. Matter. – 2004. – V.16(23). – Р.3957.
17. Orera V. M., Merino R. I., Chen Y., Cases R., Alonso P. J. Intrinsic electron and hole defects in stabilized zirconia single crystals // Phys. Rev. – 1990. - V 42(16). – Р. 9782.
18. Nikiforov S. V., Kortov V. S., Kazantseva M. G., Petrovykh K. A. Luminescent properties of monoclinic zirconium oxide // J. Lumin. – 2015. – V. 166. – Р. 111-116.
19. Nikiforov S. V., Kortov V. S., Savushkin D. L., Vokhmintsev A. S., Weinstein I. A. Thermal quenching of luminescence in nanostructured monoclinic zirconium dioxide // Radiat. Meas. – 2017. – V. 106. – Р. 155-160.
20. Marfin A. Y., Nikiforov S. V., Ananchenko D. V., Zyryanov S. S., Yakovlev G. A., Denisov E. I. Thermoluminescence of monoclinic ZrO2 after electron irradiation // AIP Conf. Proc. – 2022. – V. 2466. – Р. 030012
21. Nikiforov S. V., Menshenina A. A., Konev S. F. The influence of intrinsic and impurity defects on the luminescent properties of zirconia // J. Lumin. – 2019. – V. 212. -Р. 219-226.
Supplementary files
Review
For citations:
Dauletbekova A., Nikiforov S., Ananchenko D., Aralbayeva G., Akhmetova-Abdik G. RADIATION DEFECTS IN ZrO2 NANOSTRUCTURAL COMPACTS IRRADIATED BY ELECTRON AND ION BEAMS. NNC RK Bulletin. 2023;(2):43-48. (In Russ.) https://doi.org/10.52676/1729-7885-2023-2-42-48