MODELING OF THE CORIUM AND METALS – COOLERS INTERACTION IN A CORE CATCHER OF A LIGHT WATER REACTOR
https://doi.org/10.52676/1729-7885-2023-2-49-57
Abstract
The core catcher is one of the mandatory elements of the reactor safety system, which prevents the release of reactor core materials in a severe accident. The core catcher is steel vessel filled with sacrificial materials (SM) and forming a tank where a corium melt coming from the core is formed. The trap is a steel body filled with sacrificial materials (LM) and forming a vessel where a corium bath is formed coming from the core. The melt formed in the core catcher is cooled by heat removal to the cooling water through the shell of the steel vessel, as well as by water supplied directly to the surface of the melt after the dissolution process of the SM in corium (gravitational inversion). The delay in the water supply to the melt is associated with the features of the component structure of corium and its interaction with water (the formation of explosive hydrogen and the possibility of its detonation, as well as the threat of a steam explosion). However, a certain amount of time is spent on the implementation of gravitational inversion, and it is desirable to start the water supply to the melt immediately at the moment when the corium enters the core catcher due to the danger of the system going beyond the permissible limits (the beginning of boiling of uranium dioxide) due to decay heat in the corium. In this regard, the authors have an idea – to use a fusible metal for additional cooling of the surface of the corium in order to organize heat removal and reduce the temperature of the corium in the period before the end of the gravitational inversion process. The article presents the results of modeling the interaction of corium with candidate low-melting metals – coolers. The modeling was conducted using the ANSYS software package. As a result of the conducted work, the time for which each of the considered cooling metals will reach the points of phase transitions of melting and boiling is determined. The analysis of the results allowed us to draw appropriate conclusions about the possible practical implementation of the proposed method of cooling corium.
Keywords
About the Authors
M. K. SkakovKazakhstan
Mazhyn Skakov
Kurchatov
V. V. Baklanov
Kazakhstan
Viktor Baklanov
Kurchatov
K. O. Toleubekov
Kazakhstan
Kuanyshbek Toleubekov
Kurchatov, Semey
A. S. Akaev
Kazakhstan
Assan Akaev
Kurchatov
M. K. Bekmuldin
Kazakhstan
Maxat Bekmuldin
Kurchatov, Semey
A. V. Gradoboev
Russian Federation
Alexandr Gradoboev - Professor, Division for Experimental Physics, School of Nuclear Science and Engineering, Tomsk Polytechnic University, Dr. Tech. Sc.
Tomsk
References
1. Kukhtevich I.V., Bezlepkin V.V., Khabenskiy V.B., Granovskiy V.S., Asmolov V.G., Beshta S.V., Sidorov A.S., Berkovich V.M., Strizhev V.F., Khua Min' Chan, Rogov M.F., Novak V.P. Kontseptsiya lokalizatsii rasplava koriuma na vnekorpusnoy stadii zaproektnoy avarii AES s VVER-1000 // Otraslevaya konferentsiya «Voprosy bezopasnosti AES s VVER». SPb., 2000.
2. Molchanov I. A., Shumilin M. P. Uderzhanie rasplava aktivnoy zony vnutri kontaymenta pri tyazhelykh avariyakh yadernykh energoblokov // VostochnoEvropeyskiy zhurnal peredovykh tekhnologiy. – 2011. – No. 2(8). – P. 65–67.
3. Sidorov A.S., Rogov M.F., Novak V.P., Kukhtevich I.V., Bezlepkin V.V., Khabenskiy V.B., Granovskiy V.S., Beshta S.V., Asmolov V.G. Ustroystvo lokalizatsii rasplava Tyan'van'skoy AES. Konstruktsiya i funktsionirovanie // Otraslevaya konferentsiya «Voprosy bezopasnosti AES s VVER». SPb., 2000.
4. Stolyarevskiy A.Ya. Problema uderzhaniya rasplava topliva v zashchitnoy obolochke AES s VVER // Al'ternativnaya energetika i ekologiya. – 2014. No. 6 (146). – P. 25–35.
5. Sidorov A.S., Nosenko G.E., Granovskiy V.S. i dr., Sistema zashchity zashchitnoy obolochki reaktornoy ustanovki vodo-vodyanogo tipa, Pat. RF No. 2165108, 04.10.2001, byul. No. 32.
6. Melt-Structure-Water Interactions During Severe Accident in LWRs. B.R. Sehgal et al, NPSD, Royal Institute of Technology, Annual Report, Sweden, Nov. 2000.
7. Gusarov V.V., Al'myashev V.I., Beshta S.V., Khabenskiy V.B., Udalov Yu.P., Granovskiy V.S. Zhertvennye materialy sistemy bezopasnosti atomnykh elektrostantsiy – novyy klass funktsional'nykh materialov // Teploenergetika. – 2001. – No. 9, sentyabr'. – P. 22–24.
8. Asmolov V.G. i dr. Vybor bufernogo materiala lovushki dlya uderzhaniya rasplava aktivnoy zony VVER-1000 // Atomnaya energiya. – 2002. – T. 92. – Issue 1. – P. 7–18
9. Morozov A. V., Remizov O. V. Tyazhelye avarii na AES s VVER. – 2012. – 136 p.
10. Stolyarevskiy A.Ya., Atomnye stantsii: teper' s «lovushkoy», – «Energiya», 2002. – No. 4, – P. 9–17
11. Skakov M., Toleubekov K., Baklanov V., Gradoboev A., Akayev A., & Bekmuldin M. The method of corium cooling in a core catcher of a light-water nuclear reactor. Eurasian Physical Technical Journal, 19(3(41), 2022, 69– 77. https://doi.org/10.31489/2022No3/69-77.
12. ANSYS Fluent Tutorial Guide, 2016.
13. Sidorov A.S. Lokalizatsiya i ohlajdenie koriuma v zaproektnoi avarii vodo-vodyanogo energeticheskogo reaktora pri razruşenii aktivnoi zony // dissertatsiya na soiskanie uchenoi stepeni kandidata tehnicheskih nauk, Moscow, 2004 g.
14. Chirkin V.S., «Teplofizicheskie svoystva materialov yadernoy tekhniki», Moscow: ATOMIZDAT. – 1968.
15. Bechta, S.V., Granovsky, V.S., Khabensky, et al. VVER steel corrosion during in-vessel retention of corium melt. European Review Meeting on Severe Accident Research (ERMSAR Meeting), 23–25 September, 2008b, Nessebar, Bulgaria.
16. V. G. Asmolov, V. N. Zagryazkin, E. V. Astakhova, i dr. Plotnost' UO2–ZrO2-rasplavov, TVT, 2003. – Tom 41. – Issue 5. – P. 714–719.
Review
For citations:
Skakov M.K., Baklanov V.V., Toleubekov K.O., Akaev A.S., Bekmuldin M.K., Gradoboev A.V. MODELING OF THE CORIUM AND METALS – COOLERS INTERACTION IN A CORE CATCHER OF A LIGHT WATER REACTOR. NNC RK Bulletin. 2023;(2):49-57. https://doi.org/10.52676/1729-7885-2023-2-49-57