СУ ТАЗАЛАУ ҮШІН Ti3C2TX/3D ҚҰРЫЛЫМДЫ КОМПОЗИТТЕРДІ СИНТЕЗІ, ПАРАМЕТРЛЕРІ ЖӘНЕ ҚОЛДАНУ – ШАҒЫН ШОЛУ
https://doi.org/10.52676/1729-7885-2023-4-47-57
Аннотация
MXene деп аталатын екі өлшемді (2D) өтпелі металл карбидтері/нитридтері, әсіресе Ti3C2TX және полимерлі гидрогельдер немесе аэрогельдер сияқты үш өлшемді (3D) құрылымдар биомедицинада, суда қолдану үшін тиімді қасиеттері бар, әрқайсысы өз алдына перспективалы жүйелер болып табылады. тазарту, электронды құрылғылар мен батареялар. MXene-ді гидрогельдермен немесе аэрогельдермен біріктіру олардың жеке қасиеттерін одан әрі жақсарта алады және жаңа сипаттамалар береді. Ол сонымен қатар MXene химиялық тұрақтылығын айтарлықтай жақсарта алады, бұл қазіргі уақытта оларды кеңінен қолданудың негізгі шектеуші факторларының бірі болып табылады. Бұл мақалада біз Ti3C2TX MXene/3D гидрогель және аэрогель композиттерін өндірудің кейбір репрезентативті әдістері мен қасиеттерін, сондай-ақ суды тазарту үшін осы композиттердің таңдалған қолданбаларын қарастырамыз.
Авторлар туралы
Ә. БайменовҚазақстан
Ш. Дауылбаев
Қазақстан
Ә. Сатаева
Қазақстан
А. Нұршәріп
Қазақстан
Ж. Жандосов
Қазақстан
Әдебиет тізімі
1. Novoselov K.S. et al. Electric field effect in atomically thin carbon films // Science. United States. –2004. – Vol. 306. – No. 5696. – P. 666–669.
2. Manzeli S. et al. 2D transition metal dichalcogenides // Nat. Rev. Mater. – 2017. – Vol. 2. – No. 8. – P. 17033.
3. Naseri A. et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions // J. Mater. Chem. A. The Royal Society of Chemistry. – 2017. – Vol. 5. – No. 45. – P. 23406–23433.
4. Xu Y. et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications // Nanoscale. The Royal Society of Chemistry. – 2019. – Vol. 11. – No. 31. – P. 14491– 14527.
5. Lei W. et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization // Nat. Commun. England. – 2015. – Vol. 6. – P. 8849.
6. Tan C. et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials // Chem. Rev. – 2017. – Vol. 117. – No. 9. – P. 6225–6331.
7. Naguib M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 // Adv. Mater. Germany. – 2011. – Vol. 23. – No. 37. – P. 4248–4253.
8. Naguib M. et al. Two-Dimensional Transition Metal Carbides // ACS Nano. American Chemical Society. – 2012. – Vol. 6. – No. 2. – P. 1322–1331.
9. Ghidiu M. et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance // Nature. – 2014. – Vol. 516. – No. 7529. – P. 78–81.
10. Naguib M. et al. 25th anniversary article: MXenes: a new family of two-dimensional materials // Adv. Mater. Germany. – 2014. – Vol. 26. – No. 7. – P. 992–1005.
11. Anasori B., Gogotsi Y. MXenes: trends, growth, and future directions // Graphene 2D Mater. – 2022. – Vol. 7. – No. 3. – P. 75–79.
12. Soundiraraju B., George B.K. Two-Dimensional Titanium Nitride (Ti(2)N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate // ACS Nano. United States. – 2017. – Vol. 11. – No. 9. – P. 8892–8900.
13. VahidMohammadi A., Rosen J., Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes) // Science. United States. – 2021. – Vol. 372. – No. 6547.
14. Dong Y. et al. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators // Nano Energy. – 2018. – Vol. 44. – P. 103–110.
15. Yang J. et al. MXene-Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors // Adv. Mater. Interfaces. – 2019. – Vol. 6. –No. 8. – P. 1802004.
16. Zhan X. et al. MXene and MXene-based composites: Synthesis, properties and environment-related applications // Nanoscale Horizons. Royal Society of Chemistry. – 2020. – Vol. 5. – No. 2. – P. 235–258.
17. Wang Z. et al. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption // Compos. Part A Appl. Sci. Manuf. – 2020. – Vol. 136. – P. 105956.
18. Mashtalir O. et al. Intercalation and delamination of layered carbides and carbonitrides // Nat. Commun. England. – 2013. – Vol. 4. – P. 1716.
19. Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage // Nat. Rev. Mater. – 2017. – Vol. 2. – No. 2. – P. 16098.
20. Kamysbayev V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes // Science. United States. – 2020. – Vol. 369. – No. 6506. – P. 979–983.
21. Meshkian R. et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene // Acta Mater. – 2017. – Vol. 125. – P. 476–480.
22. Mathis T.S. et al. Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene // ACS Nano. – 2021. – Vol. 15. – No. 4. – P. 6420–6429.
23. Lukatskaya M.R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide // Science. United States. – 2013. – Vol. 341. – No. 6153. – P. 1502–1505.
24. Riazi H. et al. Ti3C2MXene-polymer nanocomposites and their applications // J. Mater. Chem. A. Royal Society of Chemistry. – 2021. – Vol. 9. – No. 13. – P. 8051–8098.
25. Carey M., Barsoum M.W. MXene polymer nanocomposites: a review // Mater. Today Adv. Elsevier Ltd. – 2021. – Vol. 9. – P. 100120.
26. Verger L. et al. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications // Trends Chem. Elsevier Inc. – 2019. – Vol. 1. – No. 7. – P. 656–669.
27. Hu A. et al. One-step synthesis for cations intercalation of two-dimensional carbide crystal Ti3C2 MXene // Appl. Surf. Sci. – 2020. – Vol. 505. –P. 144538.
28. Lim K.R.G. et al. Fundamentals of MXene synthesis // Nat. Synth. – 2022. – Vol. 1. – No. 8. – P. 601–614.
29. Shayesteh Zeraati A. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance // Nanoscale. The Royal Society of Chemistry. – 2021. – Vol. 13. – No. 6. – P. 3572–3580.
30. Alhabeb M. et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) // Chem. Mater. American Chemical Society. – 2017. – Vol. 29. – No. 18. – P. 7633–7644.
31. Zhao X., Radovic M., Green M.J. Synthesizing MXene Nanosheets by Water-free Etching // Chem. – 2020. – Vol. 6. – No. 3. – P. 544–546.
32. Natu V. et al. 2D Ti3C2Tz MXene Synthesized by Waterfree Etching of Ti3AlC2 in Polar Organic Solvents // Chem. – 2020. – Vol. 6. – No. 3. – P. 616–630.
33. Sun W. et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution // J. Mater. Chem. A. The Royal Society of Chemistry. – 2017. – Vol. 5. – No. 41. – P. 21663–21668.
34. Li T. et al. Fluorine-Free Synthesis of High-Purity Ti3C2 Tx (T=OH, O) via Alkali Treatment // Angew. Chem. Int. Ed. Engl. Germany. – 2018. – Vol. 57. – No. 21. – P. 6115–6119.
35. Huang S., Mochalin V.N. Understanding Chemistry of Two-Dimensional Transition Metal Carbides and Carbonitrides (MXenes) with Gas Analysis // ACS Nano. American Chemical Society – 2020. – Vol. 14. – No. 8. – P. 10251–10257.
36. Maleski K., Mochalin V., Gogotsi Y. Dispersions of TwoDimensional Titanium Carbide MXene in Organic Solvents // Chem. Mater. – 2017. – Vol. 29.
37. Jawaid A. et al. Halogen Etch of Ti3AlC2 MAX Phase for MXene Fabrication. // ACS Nano. United States. – 2021. – Vol. 15. – No. 2. – P. 2771–2777.
38. Li Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte // Nat. Mater. England. – 2020. – Vol. 19. – No. 8. – P. 894–899.
39. Wang Q. et al. Modified Ti3C2TX (MXene) nanosheetcatalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics // Chem. Eng. J. – 2020. – Vol. 401. –P. 126129.
40. Ge G. et al. Ti3C2Tx MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach // ACS Nano. – 2021. – Vol. 15. – No. 2. – P. 2698–2706.
41. Zhang Y.-Z. et al. MXenes stretch hydrogel sensor performance to new limits // Sci. Adv. – 2018. – Vol. 4. – No. 6. – P. eaat0098.
42. Orangi J. et al. Conductive and highly compressible MXene aerogels with ordered microstructures as highcapacity electrodes for Li-ion capacitors // Mater. Today Adv. – 2021. – Vol. 9. – P. 100135.
43. Bian R. et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance // J. Mater. Chem. C. – 2019. – Vol. 7. – No. 3. – P. 474–478.
44. Yang Z. et al. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor // Chem. Eng. J. – 2021. – Vol. 425. – P. 130462.
45. Ye G. et al. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction // Theranostics. Australia. – 2020. – Vol. 10. – No. 5. – P. 2047–2066.
46. Wychowaniec J.K. et al. Unique cellular network formation guided by heterostructures based on reduced graphene oxide – Ti3C2Tx MXene hydrogels // Acta Biomater. – 2020. – Vol. 115. – P. 104–115.
47. Deng Y. et al. Fast Gelation of Ti3C2Tx MXene Initiated by Metal Ions // Adv. Mater. – 2019. – Vol. 31. – No. 43. – P. 1902432.
48. Huang S. et al. Understanding the effect of sodium polyphosphate on improving the chemical stability of Ti3C2Tz MXene in water // J. Mater. Chem. A. The Royal Society of Chemistry. – 2022. – Vol. 10. – No. 41. – P. 22016– 22024.
49. Sang X. et al. Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene // ACS Nano. United States. – 2016. – Vol. 10. – No. 10. – P. 9193–9200.
50. Dillon A.D. et al. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide // Adv. Funct. Mater. – 2016. – Vol. 26. – No. 23. – P. 4162–4168.
51. Li Y., Zhang X. Electrically Conductive, Optically Responsive, and Highly Orientated Ti3C2Tx MXene Aerogel Fibers // Adv. Funct. Mater. – 2022. – Vol. 32. – No. 4. – P. 2107767.
52. Sun R. et al. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding // Adv. Funct. Mater. – 2017. – Vol. 27. – No. 45. – P. 1702807.
53. Zhang J. et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity // Adv. Mater. Germany. – 2020. – Vol. 32. – No. 23. – P. e2001093.
54. Lipatov A. et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes // Matter. – 2021. – Vol. 4. – No. 4. – P. 1413–1427.
55. Ma Y. et al. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor // ACS Nano. United States. – 2018. – Vol. 12. – No. 4. – P. 3209–3216.
56. Zhao S. et al. Additive manufacturing of silica aerogels // Nature. – 2020. – Vol. 584. – No. 7821. – P. 387–392.
57. Sun J.-Y. et al. Highly stretchable and tough hydrogels // Nature. England. – 2012. – Vol. 489. – No. 7414. – P. 133–136.
58. Shahzad A. et al. Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions // J. Nucl. Mater. – 2020. – Vol. 539. – P. 152277.
59. Wang N.-N. et al. Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation // ACS Appl. Mater. Interfaces. – 2019. – Vol. 11. – No. 43. – P. 40512–40523.
60. Jun B.-M. et al. Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater // Nucl. Eng. Technol. – 2020. – Vol. 52. – No. 6. – P. 1201– 1207.
61. Zhang P. et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets // J. Hazard. Mater. – 2020. – Vol. 396. – P. 122731.
62. Shahzad A. et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions // Chem. Eng. J. – 2019. – Vol. 368. – P. 400–408.
63. Dong Y. et al. Mxene/alginate composites for lead and copper ion removal from aqueous solutions // RSC Adv. – 2019. – Vol. 9. – No. 50. – P. 29015–29022.
64. Shahzad A. et al. Exfoliation of Titanium Aluminum Carbide (211 MAX Phase) to Form Nanofibers and TwoDimensional Nanosheets and Their Application in Aqueous-Phase Cadmium Sequestration // ACS Appl. Mater. Interfaces. – 2019. – Vol. 11. – No. 21. – P. 19156–19166.
65. Wu Z. et al. MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants // Chem. Eng. J. – 2020. – Vol. 394. – P. 124921.
66. Wang X. et al. Adsorption of methylene blue and Congo red from aqueous solution on 3D MXene/carbon foam hybrid aerogels: A study by experimental and statistical physics modeling // J. Environ. Chem. Eng. – 2023. – Vol. 11. – No. 1. – P. 109206.
67. Wang Y. et al. Ternary ZIF-67/MXene/CNF aerogels for enhanced photocatalytic TBBPA degradation via peroxymonosulfate activation // Carbohydr. Polym. – 2022. – Vol. 298. – P. 120100.
68. Li X. et al. Simple synthesis of copper/MXene/polyacrylamide hydrogel catalyst for 4nitrophenol reduction // Mater. Lett. – 2022. – Vol. 324. – P. 132705.
69. Jiang J. et al. Hollow porous Cu particles from silicaencapsulated Cu2O nanoparticle aggregates effectively catalyze 4-nitrophenol reduction // Nanoscale. The Royal Society of Chemistry. – 2017. – Vol. 9. – No. 11. – P. 3873–3880.
70. Chen M. et al. Enhanced degradation of tetrabromobisphenol A by magnetic Fe3O4@ZIF-67 composites as a heterogeneous Fenton-like catalyst // Chem. Eng. J. – 2021. – Vol. 413. – P. 127539.
71. Zheng W. et al. The g-C3N4 modified by AgBr and ZIF-8 adsorption-photocatalysis synergistic degradation of bisphenol A // Res. Chem. Intermed. – 2021. Vol. 47. – No. 4. – P. 1471–1487.
72. Ying Y. et al. Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium(VI) from Water // ACS Appl. Mater. Interfaces. American Chemical Society. – 2015. – Vol. 7. – No. 3. – P. 1795–1803.
Рецензия
Дәйектеу үшін:
Байменов Ә., Дауылбаев Ш., Сатаева Ә., Нұршәріп А., Жандосов Ж. СУ ТАЗАЛАУ ҮШІН Ti3C2TX/3D ҚҰРЫЛЫМДЫ КОМПОЗИТТЕРДІ СИНТЕЗІ, ПАРАМЕТРЛЕРІ ЖӘНЕ ҚОЛДАНУ – ШАҒЫН ШОЛУ. ҚР ҰЯО жаршысы. 2023;(4):47-57. https://doi.org/10.52676/1729-7885-2023-4-47-57
For citation:
Baimenov A., Daulbayev Ch., Satayeva A., Nursharip A., Jandosov J. SYNTHESIS, PARAMETERS AND APPLICATION OF Ti3C2TX/3D STRUCTURED COMPOSITES FOR WATER PURIFICATION – A MINI REVIEW. NNC RK Bulletin. 2023;(4):47-57. (In Russ.) https://doi.org/10.52676/1729-7885-2023-4-47-57