ИМПУЛЬСТІК ЭЛЕКТРОНДЫ СӘУЛЕНІҢ ЖОҒАРЫ ДОЗАЛАРЫМЕН СӘУЛЕЛЕНГЕН ЦИРКОНИЙ КЕРАМИКАСЫНЫҢ ТЕРМОЛЮМИНЕСЦЕНТТІ ЖӘНЕ ДОЗИМЕТРИЯЛЫҚ ҚАСИЕТТЕРІ
https://doi.org/10.52676/1729-7885-2023-4-67-76
Аннотация
Жұмыста екі түрдегі моноклиникалық цирконий диоксиді керамикасының термолюминесценттік (ТЖ) және дозиметриялық қасиеттерін зерттеу нәтижелері берілген: электр пешінде Т = 700–1700 °С және қуат тығыздығы бар жоғары энергиялы электрондар ағынында (1,4 МэВ) агломерациялау арқылы синтезделеді. Бірінші типтегі керамиканы T > 1000 °C температурада күйдіру кезінде кристаллдардың өлшемі айтарлықтай ұлғайатыны анықталды, бұл үлгілерді импульстік электронды сәуленің (130 кэВ) жоғары дозаларымен (кГр ретімен) сәулелендіруден кейін 390 К ТЛ шыңының қарқындылығының айтарлықтай жоғарылауымен сәйкес келеді. Ал электрондық сәулелік әдіспен синтезделген 2-ші типтегі керамика ең жоғары ТЛ реакциясына ие болды. Сондай-ақ жұмыста синтез жағдайларының ТШ кинетикалық параметрлеріне әсер ету заңдылықтары және дозаға тәуелділіктің сызықтық емес коэффициенттері қарастырылады. Қарқынды оқшауланған ТЛ шыңының болуы, дозаға тәуелділіктің көпшілігінің сызықтық сипаты және елеусіз аз фединг жоғары дозаларды (бірлік-ондаған кГр) өлшеу үшін осы жұмыста синтезделген керамиканың болашағы туралы куәландырады.
Авторлар туралы
С. В. НикифоровҚазақстан
М. Ф. Герасимов
Қазақстан
Я. П. Касаткина
Қазақстан
О. В. Денисова
В. М. Лисицын
Ресей
М. Г. Голковский
Ресей
А. Т. Акилбеков
Қазақстан
А. М. Даулетбекова
Қазақстан
Г. М. Аралбаева
Қазақстан
А. Д. Акылбекова
Қазақстан
Әдебиет тізімі
1. C. Barry Carter, M. Grant Norton. Ceramic Materials. Science and Engineering. Springer, 2007. 716 p.
2. Salas-Juárez, Ch.J. Afterglow based detection and dosimetry of beta particle irradiated ZrO2 / Ch.J. Salas-Juárez, C. Cruz-Vázquez, R. Avilés-Monreal, R. Bernal // Applied Radiation and Isotopes. – 2018. – Vol. 138. – P. 6–9. https://doi.org/10.1016/j.apradiso.2017.10.026
3. Lokesha, H.S. Thermoluminescence of monoclinic ZrO2: Kinetic analysis and dosimetric features / H.S. Lokesha, M.L. Chithambo, S. Chikwembani // Journal of Luminescence. – 2020. – Vol. 218. – 116864. https://doi.org/10.1016/j.jlumin.2019.116864.
4. Kortov, V.S. Nanophosphors and outlooks for their use in ionizing radiation detection // Radiation Measurements. – 2010. – Vol. 45. – P. 512–515. https://doi.org/10.1016/j.radmeas.2009.11.009
5. Salah, N. Nanocrystalline materials for the dosimetry of heavy charged particles: A review // Radiation Physics and Chemistry. – 2011. – Vol. 80 (1). – P. 1–10. https://doi.org/10.1016/j.radphyschem.2010.08.003
6. Seid, E.T. Post-heat treatment effect on the properties of indium doped zinc oxide nanocrystals produced by the solgel method / E.T. Seid, F.B. Dejene // Optical Materials Express. – 2020. – Vol. 10. – No. 11. – P. 2849–2865. https://doi.org/10.1364/OME.400912
7. Z. Wang, J. Zhang, G. Zheng, Y. Liu, Y. Zhao. The unusual variations of photoluminescence and afterglow properties in monoclinic ZrO2 by annealing // Journal of Luminescence. – 2012. – Vol. 132. – No. 11. – P. 2817–2821.
8. E. Aleksanyan, M. Kirm, E. Feldbach, V. Harutyunyan. Identification of F+ centers in hafnia and zirconia nanopowders // Radiation Measurements. –2016. – Vol. 90. – P. 84–89.
9. Paje, S. E., and J. Llopis. Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia // Applied Physics A. – 1994. – Vol. 59. – No. 6. – P. 569–574.
10. G.M. Phatak, K Gangadharan, H Pal, JP Mittal. Luminescence properties of Ti-doped gem-grade zirconia powders // Bulletin of Materials Science. – 1994. – Vol. 17. – No. 2. – P. 163–169.
11. Toshihide Ito, Motohiro Maeda, and Kazuhiko Nakamura. Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons // Journal of applied physics. – 2005. – Vol. 97. – No. 5. – P. 054104.
12. Y. Cong, B. Li, S. Yue, D. Fan, X. Wang. Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction // The Journal of Physical Chemistry C. – 2009. – Vol. 113. – No. 31. – P. 13974–13978.
13. Lokesha, H.S. Effect of annealing on luminescence of ZrO2 irradiated with 100 MeV Si7+ ions / H.S. Lokesha, K.R. Nagabhushana, F. Singh // Optical Materials. – 2020. – Vol. 107. – P. 109984. https://doi.org/10.1016/j.optmat.2020.109984
14. Joy, K. Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO2 thin films prepared by sol-gel route / K. Joy, I.J. Berlin, P.B. Nair, J.S. Lakshmi, G.P. Daniel, P.V. Thomas // Journal of Physics and Chemistry of Solids. – 2011. – Vol. 72. – Iss. 6. – P. 673–677. https://doi.org/10.1016/j.jpcs.2011.02.012
15. Ashraf, S. Optical influence of annealing in nanoand submicron-scale ZrO2 powders / S. Ashraf, M. Irfan, D. Kim, J.-H.Jang, W.-T. Han, Y.-D. Jho // Ceramics International. – 2014. – Vol. 40. – Iss. 6. – P. 8513–8518. https://doi.org/10.1016/j.ceramint.2014.01.063
16. Tamrakar, R.K. Effect of annealing temperature on thermoluminescence glow curve for UV and gamma ray induced ZrO2:Ti phosphor / R.K. Tamrakar, N. Tiwari, R.K. Kuraria, D.P. Bisen, V. Dubey, K. Upadhyay // Journal of Radiation Research and Applied Sciences. – 2015. – Vol. 8. – Iss. 1. – P. 1–10. https://doi.org/10.1016/j.jrras.2014.10.005
17. Ghyngazov, S.A. Radiation-Thermal Sintering of Zirconia Powder Compacts Under Conditions of Bilateral Heating Using Beams of Low-Energy Electrons / S.A. Ghyngazov, T.S. Frangulyan, A.V. Chernyavskii, A.K. Goreev, E.P. Naiden // Russian Physics Journal. – 2015. – Vol. 58. – No. 2. – P. 188–191. https://doi.org/10.1007/s11182-015-0480-2
18. Suvorov, S.A. Microwave Synthesis of Corundum-Zirconia Materials / S.A. Suvorov, I.A. Turkin, M.A. Dedovets // Refractories and Industrial Ceramics. – 2002. – Vol. 43. – Nos. 9–10. – P. 283–288. https://doi.org/10.1023/A:1022382431509
19. Trindade, N.M. Synthesis and thermoluminescence properties of MgAl2O4:Ca laser-sintered ceramics / N.M. Trindade, E.P. Silva, M.C.S. Nunes, J.M. Munoz, J.C.A. Santos, E.M. Yoshimura, R.S. Silva // Optical Materials. – 2020. – Vol. 108. – P. 110181. https://doi.org/10.1016/j.optmat.2020.110181
20. Lisitsyn, V.; Mussakhanov, D.; Tulegenova, A.; Kaneva, E.; Lisitsyna, L.; Golkovski, M.; Zhunusbekov, A. The Optimization of Radiation Synthesis Modes for YAG:Ce Ceramics // Materials. – 2023. – Vol. 16. – P. 3158. https://doi.org/10.3390/ma16083158
21. Lisitsyn, V.; Tulegenova, A.; Kaneva, E.; Mussakhanov, D.; Gritsenko, B. Express Synthesis of YAG:Ce Ceramics in the High-Energy Electrons Flow Field // Materials. – 2023. – Vol. 16. – P. 1057. https://doi.org/10.3390/ma16031057
22. Nikiforov, S.V. Luminescent and dosimetric properties of magnesium oxide ceramics synthesized by a high-energy electron beam / S.V. Nikiforov, V.M. Lisitsyn, D.V. Ananchenko, Y.P. Kasatkina, M.G. Golkovski, A.V. Ishchenko // Letters to the Journal of Technical Physics. – 2022. – Vol. 48. – No. 11. – P. 8–11. https://doi.org/10. 21883/PJTF.2022.11.52605.19174 (in Russian)
23. Mehnert, R. Electron beams in research and technology // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 1995. – Vol. 105 (1–4), – P. 348–358. https://doi.org/10.1016/0168-583X(95)00634-6
24. Nasiri, S. Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5 / S. Nasiri, M. Rabiei, A. Palevicius, G. Janusas, A. Vilkauskas, V. Nutalapati, A. Monshi // Nano Trends. – 2023. – Vol. 3. – P. 100015. https://doi.org/10.1016/j.nwnano.2023.100015
25. S.V. Nikiforov, V.S. Kortov, D.L. Savushkin, A.S. Vokhmintsev, I.A. Weinstein. Thermal quenching of luminescence in nanostructured monoclinic zirconium dioxide // Radiat. Meas. – 2017. https://doi.org/10.1016/j.radmeas.2017.03.020
26. Kiisk, V. Photo-, thermoand optically stimulated luminescence of monoclinic zirconia / V. Kiisk, L. Puust, K. Utt, A. Maaroos, H. Mändar, E. Viviani, F. Piccinelli, R. Saar, U. Joost, I. Sildos // Journal of Luminescence. – 2016. – Vol. 174. – P. 49–55. https://doi.org/10.1016/j.jlumin.2015.12.020
27. Nikiforov, S. V., Menshenina, A. A., Konev, S. F., The influence of intrinsic and impurity defects on the luminescent properties of zirconia // J. Lumin. – 2019. – Vol. 212. – P. 219–226. https://doi.org/10.1016/j.jlumin.2019.03.062
28. Popov A.I. Basic properties of the F-type centers in halides, oxides and perovskites / A.I. Popov, E.A. Kotomin, J. Maier // Nuclear Instruments and Methods in Physics Research B. – 2010. – Vol. 268. – P. 3084–3089.
29. Electronic excitations and defect creation in wide-gap MgO and Lu3Al5O12 crystals irradiated with swift heavy ions / A. Lushchik, T. Karner, Ch. Lushchik, K. Schwartz, F. Savikhin, E. Shablonin, A. Shugai, E. Vasil’chenko // Nuclear Instuments and Methods in Physics Research B. – 2012. – Vol. 286. – P. 200–208.
30. Jean-Marc Costantini, François Beuneu, Didier Gourier, Christina Trautmann, Georges Calas and Marcel Toulemonde "Colour centre production in yttria-stabilized zirconia by swift charged particle irradiations // Journal of Physics: Condensed Matter. – 2004. Vol. 16. – No. 23. – P. 3957.
31. Nikiforov, S.V., Kortov, V.S., Kazantseva, M.G., Petrovykh, K.A. Luminescent properties of monoclinic zirconium oxide // J. Lumin. – 2015. – Vol. 166. – P. 111–116.
32. Chen, R. and McKeever, S.W.S. Theory of Thermoluminescence and Related Phenomena // World Scientific. – 1997. – 559 p. https://doi.org/10.1142/2781
33. Kitis, G., Gomez-Ros, J.M., Tuyn, J.W.N., 1998. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D: Appl. Phys. – Vol. 31. – P. 2636–2641. https://doi.org/10.1088/0022-3727/31/19/037
34. Lokesha, H.S. A combined study of the thermoluminescence and electron paramagnetic resonance of point defects in ZrO2:Er3+ / H.S. Lokesha, M.L. Chithambo // Radiation Physics and Chemistry. – 2020. – Vol. 172. – P. 108767. https://doi.org/10.1016/j.radphyschem.2020.108767
35. Nikiforov, S.V. The effect of annealing temperature on the change in the structure, luminescent and dosimetric properties of ultrafine α-Al2O3 ceramics / S.V. Nikiforov, D.V. Ananchenko, G.R. Ramazanova, T.V. Shtang, A.V. Ishchenko, G.A. Yakovlev // Radiation Measurements. – 2023. – Vol. 166. – P. 106981. https://doi.org/10.1016/j.radmeas.2023.106981
36. Mandlik, N.T. Effect of size variation and gamma irradiation on thermoluminescence and photoluminescence characteristics of CaSO4:Eu microand nanophosphors / N.T. Mandlik, P.D. Sahare, S.D. Dhole // Applied Radiation and Isotopes. – 2020. – Vol. 159. – P. 109080. https://doi.org/10.1016/j.apradiso.2020.109080
37. Saran, M. Thermoluminescence in Eu doped NaLi2PO4TLD nanophosphor: Effect of particle size on TL characteristics / M. Saran, P.D. Sahare, V. Chauhan, R. Kumar, N.T. Mandlik // Journal of Luminescence. – 2021. – Vol. 238. – P. 118207. https://doi.org/10.1016/j.jlumin.2021.118207
38. Altunal, V. A calcination study on BeO ceramics for radiation dosimetry / V. Altunal, V. Guckan, A. Ozdemir, Z. Yegingil // Materials Research Bulletin. – Vol. 130. – 2020. – P. 110921. https://doi.org/10.1016/j.materresbull.2020.110921
39. Tsoutsoumanos, E. Nanostructured TLDs: Studying the impact of crystalline size on the Thermoluminescence glowcurve shape and electron trapping parameters / E. Tsoutsoumanos, M. Saleh, P.G. Konstantinidis, V. Altunal, P.D. Sahare, Z. Yengigil, T. Karakasidis, G. Kitis, G.S. Polymeris // Radiation Physics and Chemistry. – 2023. – Vol. 212. – P. 111067. https://doi.org/10.1016/j.radphyschem.2023.111067
40. J.Z. Zhang. Optical properties and spectroscopy of nanomaterials. World Scientific Publishing Co. Pte. Ltd., 2009, 400 p. https://doi.org/10.1142/7093
41. Salah, N. TL and PL studies on CaSO4: Dy nanoparticles / N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar // Radiation Measurements. – 2006. – Vol. 41. – Iss. 1. – P. 40–47. https://doi.org/10.1016/j.radmeas.2005.07.026
42. Lawless, J.L., Chen, R., Pagonis, V. Sublinear dose dependence of thermoluminescence and optically stimulated luminescence prior to the approach to saturation level // Radiation Measurements. – 2009. – Vol. 44, – P. 606–610. https://doi.org/10.1016/j.radmeas.2009.03.003
43. Nikiforov, S.V., Pagonis, V., Merezhnikov, A.S. Sublinear dose dependence of thermoluminescence as a result of competition between electron and hole trapping centers // Radiation Measurements. – 2017. – Vol. 105, – P. 54–61. https://doi.org/10.1016/j.radmeas.2017.08.003
44. Blair, M.W., Jacobsohn, L.G., Tornga, S.C., Ugurlu, O., Bennett, B.L., Yukihara, E.G., Muenchausen, R.E. Nanophosphor aluminum oxide: Luminescence response of a potential dosimetric material. J. Lumin. – 2010. – Vol. 130. – P. 825–831. https://doi.org/10.1016/j.jlumin.2009.12.008
Рецензия
Дәйектеу үшін:
Никифоров С.В., Герасимов М.Ф., Касаткина Я.П., Денисова О.В., Лисицын В.М., Голковский М.Г., Акилбеков А.Т., Даулетбекова А.М., Аралбаева Г.М., Акылбекова А.Д. ИМПУЛЬСТІК ЭЛЕКТРОНДЫ СӘУЛЕНІҢ ЖОҒАРЫ ДОЗАЛАРЫМЕН СӘУЛЕЛЕНГЕН ЦИРКОНИЙ КЕРАМИКАСЫНЫҢ ТЕРМОЛЮМИНЕСЦЕНТТІ ЖӘНЕ ДОЗИМЕТРИЯЛЫҚ ҚАСИЕТТЕРІ. ҚР ҰЯО жаршысы. 2023;(4):67-76. https://doi.org/10.52676/1729-7885-2023-4-67-76
For citation:
Nikiforov S., Gerasimov M.F., Kasatkina Ya.P., Denisova O.V., Lisitsyn V.M., Golkovsky M.G., Akilbekov A.T., Dauletbekova A.M., Aralbaeva G.M., Akylbekoba A.D. THERMOLUMINESCENT AND DOSIMETRIC PROPERTIES OF ZIRCONIUM DIOXIDE CERAMICS IRRADIATED WITH HIGH DOSES OF PULSE ELECTRON BEAM. NNC RK Bulletin. 2023;(4):67-76. (In Russ.) https://doi.org/10.52676/1729-7885-2023-4-67-76