AB-INITIO CALCULATIONS OF RHOMBOHEDRAL BaTiO3 (111) SURFACE COMBINED WITH GRAPHENE FILMS
https://doi.org/10.52676/1729-7885-2023-4-91-97
Abstract
Thin films of ABO3 perovskite ferroelectrics are important for many industrial applications, i.e., high-capacity memory cells, catalysis, optical waveguides, and integrated optics. The use of BaTiO3 for these industries and products is due to the variety of its surface structure and, accordingly, its electronic and chemical properties. Calculations of the surface characteristics of BaTiO3 from the first principles are useful for understanding processes that play a crucial role, such as surface reaction chemistry, surface phenomena, and adsorption surfaces. This study examined theoretical calculations related to the relaxed atomic structures of the surface of BaTiO3 (111).
Keywords
About the Authors
B. M. SatanovaKazakhstan
Doctorant
G. A. Kaptagay
Kazakhstan
A. P. Zharkymbekova
Kazakhstan
F. U. Abuova
Kazakhstan
A. U. Abuova
Kazakhstan
R. N. Assylbayev
Kazakhstan
N. O. Koylyk
Kazakhstan
K. T. Tugelbayeva
Kazakhstan
References
1. Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N. & Strano M. S. Electronics and optoelectronics of twodimen- sional transition metal dichalcogenides // Nat. Nanotech- nol. – 2012. – Vol.7. – P. 699–712.
2. Geim A. K. & Grigorieva I. V. A comprehensive review of stacking 2DLMs into diverse vdWHs. Van der Waals heterostructures // Nature. – 2013. – Vol. 499. – P. 419– 425.
3. Andres, C.-G. [et al.] Deterministic transfer of twodimen- sional materials by all-dry viscoelastic stamping // 2D Mater. – 2014.– Vol. 1. – P. 011002.
4. Halim U. [et al.] A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction // Nat. Commun. – 2013. – Vol. 4. – P. 2213.
5. Ye J. [et al.] Superconducting dome in a gate-tuned band insulator // Science. – 2012. – Vol. 338. – P.1193–1196.
6. Feng Q. [et al.] Growth of MoS2(1–x) Se2x (x=0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition // ACS Nano. – 2015. – Vol. 9. – P. 7450–7455.
7. Cao Y.Unconventional superconductivity in magic-angle graphene superlattices // Nature. – 2018. – Vol. 556. – P. 43.
8. Cao Y. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices // Nature. – 2018. – Vol. 556. – P. 80.
9. Petoukhoff C. E., Kosar S., Goto M., Bozkurt I., Chhowalla M., and Dani K. M. Charge transfer dynamics in conjugated polymer/MoS2 organic/2D heterojunctions // Mol. Syst. Des. Eng. – 2019. –Vol. 4. – P. 929–938.
10. Petoukhoff C. E., Krishna M. B. M., Voiry D., Bozkurt I., Deckoff-Jones S., Chhowalla M., O’Carroll D.M., and Dani K. M. Ultrafast Charge Transfer and Enhanced Absorption in MoS2-Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces // ACS Nano. – 2016. – Vol. 10. – P.9899–9908.
11. Karmakar A., Al-Mahboob A., Petoukhoff C. E., Kravchyna O., Chan N. S., Taniguchi T., Watanabe K., and Dani K. M. Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure // ACS Nano. – 2022. – Vol. 16. – P. 3861–3869.
12. Gusynin V.P., Sharapov S.G., Carbotte J.P. Magnetooptical conductivity in graphene // J. Phys. Condens. Matter. – 2006. – Vol. 13. – P. 026222.
13. Hanson G.W. Dyadic Green’s functions for an anisotropic, non-local model of biased graphene // IEEE Trans Antennas Propag. – 2008. – Vol. 5. – P. 747–57.
14. Gusynin V.P., Sharapov S.G., Carbotte J.P. On the univer- sal ac optical background in graphene // New. J. Phys. – 2009. – Vol. 11. – P. 095013.
15. Dressel M., Gruner G. Electrodynamics of Solids. Cambridge University Press, Cambridge, UK. – 2002. – P. 148.
16. Sounas D.L., Calos C. Gyrotropy and nonreciprocity of graphene for microwave applications // IEEE Trans Microw Theory Tech. – 2012. – Vol. 60. – P. 901–14.
17. Acerce M., Voiry D., Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials // Nature Nanotechnology. – 2015. – Vol. 10. – No. 4. – P. 313–318.
18. Cook J.B., Kim H., Lin T.C., Lai C., Dunn B., Tolbert S.H. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x // Adv. Energy Mater. – 2017. – Vol. 7. – No. 2. – P. 1601283.
19. Gigot J A., Fontana M., Serrapede M., Castellino M., Bianco S., Armandi M., Bonelli B., Pirri C.F., Tresso E., Rivolo P. Mixed 1T-2H Phase MoS2/Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance // ACS Appl. Mater. Interfaces. – 2016. – Vol. 8. – No. 48. – P. 32842–32852.
20. Evarestov, R. A., Bandura, A. V. First-principles calculations on the four phases of BaTiO3 // Journal of Computational Chemistry. – 2012. – Vol. 33(11) – P. 1123–1130. https://doi.org/10.1002/jcc.22942
21. Ghosez Ph., Gonze X., Michenaud J. -P. First-principles characterization of the four phases of barium titanate // Ferroelectrics. – 1999. Vol. 220. – Issue 1. – P. 1–15. https://doi.org/10.1080/00150199908007992
22. Uludogan M., Guarin D. P., Gomez Z. E., Cagin T., Goddard W. A. DFT Studies on Ferroelectric Ceramics and Their Alloys: BaTiO3, PbTiO3, SrTiO3, AgNbO3, AgTaO3, PbxBa1-хTiO3 and SrxBa1-xTiO3 // Computer Modeling in Engineering and Sciences. – 2008. – Vol. 24. Issue 2/3. – P. 215.
23. Eglitis R. I. Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces // Applied Surface Science. – 2015. – Vol. 358. – No. 15. –P. 556– 562.
Review
For citations:
Satanova B.M., Kaptagay G.A., Zharkymbekova A.P., Abuova F.U., Abuova A.U., Assylbayev R.N., Koylyk N.O., Tugelbayeva K.T. AB-INITIO CALCULATIONS OF RHOMBOHEDRAL BaTiO3 (111) SURFACE COMBINED WITH GRAPHENE FILMS. NNC RK Bulletin. 2023;(4):91-97. https://doi.org/10.52676/1729-7885-2023-4-91-97