OBTAINING NANOCELLULOSE FROM BIOMASS AND STUDY OF THEIR PHYSICOCHEMICAL PROPERTIES
https://doi.org/10.52676/1729-7885-2024-2-56-64
Abstract
This work describes the production of nanocellulose by removing lignin from biomass by the peroxide method in the presence of an H2SO4 catalyst and the study of its physicochemical properties. The structure of cellulose and modified nanocellulose was studied using Raman spectroscopy, IR (infrared) spectroscopy, X-ray diffraction, and SEM (scanning electron microscopy). The resulting increase in the crystallinity of NFC (nanofibrous cellulose) was confirmed by X-ray diffraction analysis. This indicates that cellulose was associated with the removal of amorphous parts. As a result of X-ray diffraction, overlap on NFC radiographs occurred even in the area of intense lines. In the sample obtained by IR spectroscopy, the presence of groups (3413.12 cm−1; 2918.34 cm−1; 1373.30 cm−1; 617.52 cm−1) corresponding to the nature of NFC was detected. Strong absorption at 1429.8 cm−1 in the spectrum of CMC (carboxylmethylcellulose) revealed –COOH groups, indicating successful carboxylation of cellulose. The morphological surface, average particle size and structure of the samples were studied. As a result of a comparative analysis of morphological structures, an ordered filamentous structure of nanofibrous cellulose characteristic of fibers and a porous structure of CMC with a modified surface and uneven fibers were revealed. The developed method for producing modified cellulose from biomass does not require multi-stage processing compared to traditional methods and is safe for the environment. It has been shown that it is possible to obtain high-quality cellulose in one stage without the use of reagents containing sulfur and chlorine, high pressure and high water consumption.
About the Authors
L. E. AbdrakhmanovaKazakhstan
Almaty
B. U. Rakhimova
Kazakhstan
Almaty
Y. A. Altynov
Kazakhstan
Almaty
U. Ye. Zhantikeyev
Kazakhstan
Almaty
K. S. Bexeitova
Kazakhstan
Almaty
S. Azat
Kazakhstan
Almaty
K. K. Kudaibergenov
Kazakhstan
Almaty
A. Dauletbay
Kazakhstan
Almaty
M. Nazhipkyzy
Kazakhstan
Almaty
K. Mohammad
Malaysia
Selangor
References
1. Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites // Chem Soc Rev. 2011. Vol. 40. P. 3941–3994. https://doi.org/10.1039/C0CS00108B
2. Kargarzadeh H., Mariano M., Gopakumar D., Ahmad I., Thomas S., Dufresne A., Huang J., Lin N.. Advances in cellulose nanomaterials // Cellulose. – 2018. – Vol. 25. – P. 2151–2189. https://doi.org/10.1007/s10570-018-1723-5
3. Charreau H., Foresti M.L., Va´zquez A. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose // Recent Pat Nanotechnol. – 2013. – Vol. 7(1). – P. 56–80. https://doi.org/10.2174/1872210511307010056
4. Zhou S., Liu P., Wang M., Zhao H., Yang J., Xu F. Sustainable, reusable, and superhydrophobic aerogels from micro-fibrillated cellulose for highly effective oil/water separation // ACS Sustainable Chem. Eng. – 2016. – Vol. 4 (12). – P. 6409–6416. https://doi.org/10.1021/acssuschemeng.6b01075
5. Du H., Liu W., Zhang M., Si Ch., Zhang X., Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications // Carbohydrate Polymers. – 2019. – Vol. 209. – P. 130–144. https://doi.org/10.1016/j.carbpol.2019.01.0206.
6. Lepetit A., Drolet R., Tolnai B., Montplaisir D., Lucas R., Zerrouki R. Microfibrillated cellulose with sizing for rein-forcing composites with LDPE // Cellulose. – 2017. – Vol. 24. – No. 10. – P. 4303–4312. https://doi.org/10.1007/s10570-017-1429-0
7. Qing Y., Sabo R., Zhu J.Y., Agarwal U., Cai Z., Wu Y. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches // Carbohydrate Polymers. 2013. Vol. 97(1). – P. 226–234. https://doi.org/10.1016/j.carbpol.2013.04.086
8. Akatan K, Kabdrakhmanova S, Kuanyshbekov T. Highly-efficient isolation of microcrystalline cellulose and nanocellulose from sunflower seed waste via environmentally benign method // Cellulose. – 2022. – Vol. 29. – No. 7. – P. 3787–3802. https://doi.org/10.1007/s10570-022-04527-4
9. Kuznetsov B.N., Kuznetsova S.A., Levdansky V.A., Levdansky A.V., Vasil’eva N.Yu., Chesnokov N.V., Ivanchenko N.M., Djakovitch L., Pinel C. Optimized methods for obtaining cellulose and cellulose sulfates from birch wood // Wood Science and Technology. – 2015. – Vol. 49. – No. 4. – P. 825–843. https://doi.org/10.1007/500226-015-0723-y
10. Wadenbäck J., Clapham D.H, Gellerstedt G., Arnold S. Variation in content and composition of lignin in young wood of Norway spruce // Holzforschung. – 2004. – Vol. 58(2). – P. 107–115. https://doi.org/10.1515/HF.2004.015
11. Farooq A., Patoary M. K., Zhang M., Mussana H., Li M., Naeem M. A., … Liu L. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials // International Journal of Biological Macromolecules. – 2020. Vol. 154. – P. 1050–1073. https://doi.org/10.1016/j.ijbiomac.2020.03.163
12. Fedotova N.N., Elkin V.A. Khimicheskiy sostav iskhodnogo syr'ya (drevesnoy sosny), tsellolignina i gidrolizata, poluchennogo ot spirtovoy varki // Izvestiya Sankt-Peterburgskoy lesotekhnicheskoy akademii. – 2018. – No. 222 . – P. 254-262. (In Russ.) https://doi.org/10.21266/2079-4304.2018.222.254-262
13. Nascimento S.A., Rezende C.A. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass // Carbohydrate Polymers. – 2018. –Vol. 180. – P. 38–45. https://doi.org/10.1016/j.carbpol.2017.09.099
14. Sjöström E., Alen R. Analytical methods of wood chemistry. Pulping and papermaking. Berlin: Springer-Verlag, 1999. 318 p.
15. Park S., Baker J.O., Himmel M.E., Parilla P.A., Jonson D.K. Cellulose crystallinity index: measurement techniques and their impact on integrating cellulose performance // Biotechnology and Biofuels. – 2010. – Vol. 3. – P. 10. https://doi.org/10.1186/1754-6834-3-10
16. Elazzouzi-Hafraou S., Nishiyama Y., Putaux J.-L., Heux L., Dubreuil F., Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose // Biomacromolecules. – 2008. – Vol. 9 (1). – P. 57–65. https://doi.org/10.1021/bm700769p
17. Xu F., Yu J., Tesso T., Dowell F., Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review // Applied Energy. – 2013. – Vol. 104. – Р. 801–809. https://doi.org/10.1016/j.apenergy.2012.12.019
18. Ghaffar S.H., Fan M. Structural analysis for lignin characteristics in biomass straw // Biomass and Bioenergy. – 2013. – Vol. 57. – P. 264–279. https://doi.org/10.1016/j.biombioe.2013.07.015
19. Carrillo I., Mendonça R.T., Ago M., Rojas O.J. Comparative study of cellulosic components isolated from different Eucalyptus species // Cellulose. – 2018. – Vol. 25. – Р.1011–1029. https://doi.org/10.1007/s10570-018-1653-2.
20. J. Chumee and D. Seeburin, Cellulose extraction from Pomelo peel: synthesis of carboxymethyl cellulose // International Journal of Metallurgical and Materials Engineering. – 2014. – Vol. 8. – No. 5. – P. 435–437.
21. M. F. N. Sunardi and B. J. Ahmad. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis) // AIP Conference Proceedings. – 2017. – Vol. 1868. – Article ID 020008.
22. Wesełucha-Birczy´nska, A.; Kołodziej, A.; Swi˛etek, M.; Moskal, P.; Skalniak, Ł.; Długo´n, E.; Bła´zewicz, M. Does 2D correlation ˙Raman spectroscopy distinguish polymer nanomaterials due to the nanoaddition? // J. Mol. Struct. – 2020. – Vol. 1217. P. 128342.
23. Ago M., Endo T., Hirotsu T. Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water // Cellulose. – 2004. – Vol. 11. – Р. 163–167. https://doi.org/10.1023/B:CELL.0000025423.32330.fa
24. Li X., Li J., Gong J., Kuang Y., Mo L., Song T. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions // Carbohydrate Polymers. – 2018. – Vol. 183. – P. 303–310. https://doi.org/10.1016/j.carbpol.2017.12.085
25. Osong S.H., Norgren S., Engstrand P. Processing of woodbased microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review // Cellulose. – 2016. – Vol. 23. – Р. 93–123. https://doi.org/10.1007/s10570-015-0798-5
26. Santos, D. M., Bukzem, A. L., Ascheri, D. P. R., Signini, R. Gilberto Lucio Benedito Aquino, D. L. B. Microwave assisted carboxymethylation of cellulose extracted from brewer's spentт grain // Carbohydrate Polymers, – 2015. – Vol. 131. P. 125–133.
Supplementary files
Review
For citations:
Abdrakhmanova L.E., Rakhimova B.U., Altynov Y.A., Zhantikeyev U.Ye., Bexeitova K.S., Azat S., Kudaibergenov K.K., Dauletbay A., Nazhipkyzy M., Mohammad K. OBTAINING NANOCELLULOSE FROM BIOMASS AND STUDY OF THEIR PHYSICOCHEMICAL PROPERTIES. NNC RK Bulletin. 2024;(2):56-64. (In Kazakh) https://doi.org/10.52676/1729-7885-2024-2-56-64