UPTAKE OF TIGHTLY BOUND TRITIUM BY PLANTS
https://doi.org/10.52676/1729-7885-2024-1-104-107
Abstract
A study of the bioavailability of a tightly bound tritium in the soil in situ under the conditions of the Semipalatinsk test site (STS) and in a laboratory vegetation experiment was conducted. Significant concentrations of organically bound tritium (OBT) were recorded in Stipa capillata plants growing on the territory of the STS. At the same time, tritium in the free water of plant tissues (TFWT) was not detected. In a model experiment using Cucumis sativus culture, the specific activity of tightly bound tritium in the composition of the solid phase of the soil and tritiated water (HTO) in the composition of the soil solution at the beginning and at the end of the experiment differed significantly. At the same time, TFWT activity in Cucumis sativus was 2 orders of magnitude less compared to the activity of tightly bound tritium in the soil and slightly differed from the activity of tritiated water in the soil solution, which is accessible to the root system of plants. The results of vegetation studies have shown that the direct source of tritium for experimental plants was a soil solution. However, changes in the tritium activity in the soil liquid and solid phases in vegetation vessels indicate that the source of tritiated water in the soil solution was a tightly bound form of radionuclide as a result of leaching processes. It is assumed that the possible causes of leaching of tightly bound radionuclide from the solid phase into the soil solution are the moisture regime, as well as the influence of the rhizosphere of plants.
Keywords
About the Authors
E. N. PolivkinaKazakhstan
Kurchatov
N. V. Larionova
Kazakhstan
Kurchatov
L. V. Timonova
Kazakhstan
Kurchatov
Ye. S. Syssoeva
Kazakhstan
Kurchatov
A. V. Panitskiy
Kazakhstan
Kurchatov
References
1. Erolle F., Ducros L., Séverine L.D., Beaugellin-Seiller K. An updated review on tritium in the environment // J. Environ. Radioact. 2018. – Vol. 181. – Р. 128–137. https://doi.org/10.1016/j.jenvrad.2017.11.001
2. Shem H.-F., Yao R.-T. Study of ratio of tritium concentration in plants water to tritium concentration in air moisture for chronic atmospheric release of tritium // Energy Procedia. 2011. – Vol. 5. – P. 2421–2425. https://doi.org/10.1016/j.egypro.2011.03.416
3. Boyer C., Vichot L., Fromm M., Losset Y., Tatin-Froux F., Guetat P., Badot P.M. Tritium in plants: a review of current knowledge // Environ. Exp. Bot. – 2009. – Vol. 67 (1). P. 34–51. https://doi.org/10.1016/j.envexbot.2009.06.008
4. Timonova L. V., Lyahova O. N., Lukashenko S. N., Ajdarhanov A. O. Issledovanie soderzhaniya tritiya v pochve v mestah provedeniya yadernyh ispytanij na territorii Semipalatinskogo ispytatel'nogo poligona // Radiacionnaya biologiya. Radioe`kologiya. – 2015. – Vol. 55. (6). – P. 667–672. https://doi.org/10.7868/S0869803115050136.5
5. Serzhanova Z.B., Aidarkhanova A.K., Lukashenko S.N. Researching of tritium speciation in soils of “Balapan site” // J. Environ. Radioact. – 2018. – Vol. 192. – Р. 621–627. https://doi.org/10.1016/j.jenvrad.2018.02.01
6. Ustrojjstvo dlya izvlecheniya vody iz obrazcov. Patent No. 29721. Publ. Patent RK na poleznuyu model’ No. 29721; opubl. Astana, 2015. Byul. No. 4. Lukashenko S.N., Larionova N.V., Zarembo V.P. URL: http://kzpatents.com/4-ip29721-ustrojjstvo-dlyaizvlecheniya-vody-iz-obrazcov.html.
7. ISO 9698:2010. Kachestvo vody. Opredelenie ob"yomnoj aktivnosti tritiya. Metod podschyota stsintillyatsij v zhidkoj srede]. Astana: “KazInSt”, 2010. 32 p.
8. Diabate S., Strack S. Organically bound tritium // Health Phys. – 1993. – Vol. 65 (6). – P. 698–712.
9. Lyakhova O.N., Lukashenko S.N., Larionova N.V. et al Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test // J. Environ. Radioact. – 2012. –Vol. 113. – P. 98-107. https://doi.org/10.1016/j.jenvrad.2012.02.010
10. Atarashi-Andoh M., Amano H., Ichimasa M., Ichimasa Y. Conversion rate of HTO to OBT in plants // Fusion Sci. Techn. – 2002. – Vol. 41 (3). – Р. 427–431.
11. Polivkina E. N., Artamonova E. N., Kassymova Zh. S., Evlampiyeva E. P., Kabdulkarimova K. K., Kaygusuz M., Omarova N. M. Heavy metals in the rhizosphere of Absinthium (Artemisia absinthium L.) in conditions of technogenesis // Fresenius Environmental Bulletin. – 2018. – Vol. 27. – P. 9429-9432. https://www.prtparlar.de/download_feb_2018
12. Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications // Toxics. – 2021. – Vol. 9 (3). – P.42. https://doi.org/10.3390/toxics9030042
13. Curl E., Truelove B. The Rhizosphere. Germany: Springer, 1986. – 281 p.
14. Melintescu A., Galeriu D. Uncertainty of current understanding regarding OBT formation in plants // J. Environ. Radioact. – 2017. – Vol. 167. – p. 134–149. https://doi.org/10.1016/j.jenvrad.2016.11.026
Review
For citations:
Polivkina E.N., Larionova N.V., Timonova L.V., Syssoeva Ye.S., Panitskiy A.V. UPTAKE OF TIGHTLY BOUND TRITIUM BY PLANTS. NNC RK Bulletin. 2024;(1):104-107. https://doi.org/10.52676/1729-7885-2024-1-104-107