ГИБРИДТІ КҮН КОЛЛЕКТОРЛАРЫНДА ПАЙДАЛАНУ МҮМКІНДІГІ ҮШІН TiO2 НЕГІЗІНДЕГІ НАНОСҰЙЫҚТЫҚТАРДЫҢ ТҰРАҚТЫЛЫҒЫН ЗЕРТТЕУ
https://doi.org/10.52676/1729-7885-2024-2-135-140
Аңдатпа
Гибридті күн коллекторларында салқындату жүйесінде наносұйықтықтарды пайдалану жылу алмасуды қарқындатудың өзекті мәселесі болып табылады. Бұл жылу тасымалдағыш күн панельдерінің бетін тиімдірек салқындатуға мүмкіндік береді, бұл коллектордың өнімділігін арттырады. Дегенмен, нанобөлшектердің агломерациясында және олардың кейінгі тұнуында көрінетін наносұйықтықтың төмен тұрақтылығы жылуфизикалық қасиеттерінің нашарлауына әсер етеді. Бұл мақалада CTAB және SDBS беттік белсенді заттарымен тұрақтандырылған TiO2-бидистилденген су наносұйықтығының тұну процесі қарастырылады. Тұну процесі УКвизиялық спектроскопия арқылы бақыланды. SDBS қолдануымен салыстырғанда төмен тұну жылдамдығымен ерекшеленген CTAB беттік-белсенді затының жоғары тұрақтандырушы әсер байқалды.
Авторлар туралы
А. Ж. АдылкановаҚазақстан
Семей
А. Б. Касымов
Қазақстан
Семей
А. А. Бектемисов
Қазақстан
Семей
О. А. Степанова
Семей
М. В. Ермоленко
Қазақстан
Семей
Әдебиет тізімі
1. Center for Sustainable Systems, University of Michigan. 2023. “Greenhouse Gases Factsheet.” Pub. No. CSS05-21.
2. Friedlingstein P. et al. Global carbon budget 2022 //Earth System Science Data Discussions. – 2022. – Vol. 2022. – P. 1–159.
3. Obaideen K. et al. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park //International Journal of Thermofluids. – 2021. – Vol. 12. – P. 100123.
4. Ахметкалиева С. Перспективный ресурс зеленой энергии в Казахстане: солнечная энергетика / С. Ахметкалиева. – URL: https://www.eurasian-research.org/publication/a-promising-green-energy-resource-in-kazakhstan-solar-power/?lang=ru (дата обращения – 07.06.2024)
5. Maka A. O. M., Alabid J. M. Solar energy technology and its roles in sustainable development // Clean Energy. – 2022. – Vol. 6. – No. 3. – P. 476-483.
6. Menon G. S. et al. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium // Renewable Energy. – 2022. – Vol. 188. – P. 986–996.
7. Ibrahim A. et al. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors // Renewable and sustainable energy reviews. – 2011. – Vol. 15. – No. 1. – P. 352–365.
8. Herrando M. et al. A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems // Progress in Energy and Combustion Science. – 2023. – Vol. 97. – P. 101072.
9. Aste N., Del Pero C., Leonforte F. Water PVT collectors performance comparison // Energy Procedia. – 2017. – Vol. 105. – P. 961–966.
10. Prasetyo S. D., Prabowo A. R., Arifin Z. The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology // Heliyon. – 2023. – Vol. 9. – No. 2.
11. Tirupati Rao V., Raja Sekhar Y. Hybrid photovoltaic/thermal (PVT) collector systems with different absorber configurations for thermal management–a review // Energy & Environment. – 2023. – Vol. 34. – No. 3. – P. 690–735.
12. Samykano M. Hybrid photovoltaic thermal systems: Present and future feasibilities for Industrial and building applications // Buildings. – 2023. – Vol. 13. – No. 8. – P. 1950.
13. Otanicar T. A Review of Solar Hybrid Photovoltaic-Thermal (PV-T) Collectors and Systems // Progress in Energy and Combustion Science. – 2023.
14. Hjerrild N. E. et al. Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids // Solar Energy Materials and Solar Cells. – 2016. – Vol. 147. – P. 281–287.
15. Hassani S. et al. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems // Energy Conversion and Management. – 2016. – Vol. 123. – P. 431–444.
16. Lee J. H., Hwang S. G., Lee G. H. Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids // Energies. – 2019. – Vol. 12. – No. 16. – P. 3063.
17. Diwania S. et al. Performance enrichment of hybrid photovoltaic thermal collector with different nano-fluids // Energy & Environment. – 2023. – Vol. 34. – No. 6. – P. 1747–1769.
18. Aissa A. et al. A review of the enhancement of solar thermal collectors using nanofluids and turbulators // Applied Thermal Engineering. – 2023. – P. 220. – P. 119663.
19. Elangovan M. et al. Experimental study of a hybrid solar collector using TiO2/water nanofluids // Energies. – 2022. – Vol. 15. – No. 12. – P. 4425.
20. Kassymov A., Adylkanova А., Bektemissov А., Astemessova K., Turlybekova G. Intensification of heat transfer in hybrid solar collectors by using nanofluids as a coolant // Доклады НАН РК [Doklady NAN RK]. – 2023. – Vol. 348. – No. 4. – P. 69-79.
21. Chakraborty S., Panigrahi P. K. Stability of nanofluid: A review // Applied Thermal Engineering. – 2020. – Vol. 174. – P. 115259.
22. Okonkwo E. C. et al. An updated review of nanofluids in various heat transfer devices // Journal of Thermal Analysis and Calorimetry. – 2021. – Vol. 145. – P. 2817–2872.
23. Lenin R., Joy P. A., Bera C. A review of the recent progress on thermal conductivity of nanofluid // Journal of Molecular Liquids. – 2021. – Vol. 338. – P. 116929.
24. Pak B. C., Cho Y. I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles // Experimental Heat Transfer an International Journal. – 1998. – Vol. 11. – No. 2. – P. 151–170.
25. Xuan Y., Li Q. Heat transfer enhancement of nanofluids // International Journal of heat and fluid flow. – 2000. – Vol. 21. – No. 1. – P. 58–64.
26. Li Y. et al. The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method // Applied Surface Science. – 2007. – Vol. 253. – No. 23. – P. 9254–9258.
27. Camps I. et al. Structure-property relationships for Eu doped TiO 2 thin films grown by a laser assisted technique from colloidal sols // RSC advances. – 2017. – Vol. 7. – No. 60. – P. 37643–37653.
28. Govindasamy G., Murugasen P., Sagadevan S. Investigations on the synthesis, optical and electrical properties of TiO2 thin films by chemical bath deposition (CBD) method // Materials Research. – 2016. – Vol. 19. – P. 413–419.
29. Ould-Lahoucine C., Ramdani H., Zied D. Energy and exergy performances of a TiO2-water nanofluid-based hybrid photovoltaic/thermal collector and a proposed new method to determine the optimal height of the rectangular cooling channel // Solar Energy. – 2021. – Vol. 221. – P. 292–306.
30. Arifin Z. et al. The application of TiO2 nanofluids in photovoltaic thermal collector systems // Energy Reports. – 2022. – Vol. 8. – P. 1371–1380.
31. Ould-Lahoucine C., Ramdani H., Zied D. Energy and exergy performances of a TiO2-water nanofluid-based hybrid photovoltaic/thermal collector and a proposed new method to determine the optimal height of the rectangular cooling channel // Solar Energy. – 2021. – Vol. 221. – P. 292–306.
32. Elangovan M. et al. Experimental study of a hybrid solar collector using TiO2/water nanofluids // Energies. – 2022. – Vol. 15. – No. 12. – P. 4425.
33. Fudholi A. et al. TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach // Energy. – 2019. – Vol. 183. – P. 305–314.
34. Amrizal A., Irsyad M., Amrul A. An experimental investigation of TiO2 nanofluid as a base fluid for PV/T solar collector in low latitude tropical. – 2020.
35. Trefalt G., Borkovec M. Overview of DLVO theory // Laboratory of Colloid and Surface Chemistry, University of Geneva, Switzerland. – 2014. – Vol. 304.
36. Chakraborty S., Panigrahi P. K. Stability of nanofluid: A review // Applied Thermal Engineering. – 2020. – Vol. 174. – P. 115259.
37. Jehhef K. A. et al. Effect of surfactant addition on the nanofluids properties: A review // Acta Mechanica Malaysia. – 2019. – Vol. 2. – No. 2. – P. 1–19.
38. Ghadimi A., Saidur R., Metselaar H. S. C. A review of nanofluid stability properties and characterization in stationary conditions // International journal of heat and mass transfer. – 2011. – Vol. 54. – No. 17–18. – P. 4051–4068.
39. Hwang Y. et al.Stability and thermal conductivity characteristics of nanofluids // Thermochimica Acta. – 2007. – Vol. 455. – No. 1–2. – P. 70–74.
40. Lee K. et al. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil // Current Applied Physics. – 2009. – Vol. 9. – No. 2. – P. e128–e131.
41. Kim S. H., Choi S. R., Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. – 2007.
42. Ghadimi A., Metselaar I. H. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid // Experimental Thermal and Fluid Science. – 2013. – Vol. 51. – P. 1–9.
43. Chang H. et al. Process optimization and material properties for nanofluid manufacturing // The International Journal of Advanced Manufacturing Technology. – 2007. – Vol. 34. – P. 300–306.
Рецензия
Дәйектеу үшін:
Адылканова А.Ж., Касымов А.Б., Бектемисов А.А., Степанова О.А., Ермоленко М.В. ГИБРИДТІ КҮН КОЛЛЕКТОРЛАРЫНДА ПАЙДАЛАНУ МҮМКІНДІГІ ҮШІН TiO2 НЕГІЗІНДЕГІ НАНОСҰЙЫҚТЫҚТАРДЫҢ ТҰРАҚТЫЛЫҒЫН ЗЕРТТЕУ. ҚР ҰЯО жаршысы. 2024;(2):135-140. https://doi.org/10.52676/1729-7885-2024-2-135-140
For citation:
Adylkanova A.Zh., Kassymov A.B., Bektemissov A.A., Stepanova O.A., Yermolenko M.V. INVESTIGATION OF STABILITY OF TiO2-BASED NANOFLUIDS FOR POTENTIAL USE IN HYBRID SOLAR COLLECTORS. NNC RK Bulletin. 2024;(2):135-140. (In Russ.) https://doi.org/10.52676/1729-7885-2024-2-135-140