OBTAINING COPPER SELENIDE NANOWIRES IN SiO2/Si TRACK TEMPLATES
https://doi.org/10.52676/1729-7885-2024-2-141-145
Abstract
This paper presents a study of copper selenide nanowires obtained for the first time by template synthesis. This method allows precise control of the size and morphology of nanostructures, which indicates its high efficiency in obtaining homogeneous and well-deposited copper selenide nanowires. The SiO2/Si track template was obtained by irradiation on a DC-60 accelerator (Astana, Kazakhstan), after which the track template was chemically etched to form cylindrical pores. After irradiation and further chemical etching, copper selenide was deposited into the SiO2/Si track template by electrochemical deposition method. The morphology and amount of deposited nanoprecipitates were observed using a QUANTA 200i electron microscope with 3D scanning. X-ray diffractometer was used to determine the crystallographic structure of copper selenide nanoprecipitates. X-ray diffraction analysis (XRD) was carried out on a Rigaku miniflex 600 X-ray diffractometer. The XRD analysis revealed the formation of cubic crystalline phase of copper selenide nanowires electrochemically deposited on SiO2/Si track template. Photoluminescence (PL) spectra were measured on a CM2203 spectrofluorimeter to study the optical properties of the nanowires. The PL spectra were recorded at room temperature from 300 nm to 800 nm in 5 nm steps under a xenon lamp. Differential decomposition of the FL spectra showed two main peaks (2.5 and 2.8 eV).
About the Authors
G. G. SarsekhanKazakhstan
doctoral student,
Astana
A. D. Akylbekova
Kazakhstan
Astana
Z. K. Baimukhanov
Kazakhstan
Astana
A. A. Amantaeva
Kazakhstan
Astana
References
1. Fujimaki M., Rocksthul C., Wang X., Awazu K., Tominaga J., Koganezawa Y., Ohki Y., Komatsubara T. Silica-based monolithic sensing plates for waveguide-mode sensors. // Optics express. – 2008. - V. 16(9). – P. 6408-6416. https://doi.org/10.1364/OE.16.006408
2. Dallanora A., Marcondes T. L., Bermudez G. G., Fichtner P. F. P., Trautmann C., Toulemonde M., & Papaleo R. M. Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability. // Journal of Applied Physics. - 2008. – V. 104(2). – P. 024307. https://doi.org/10.1063/1.2957052
3. Al’zhanova, A., Dauletbekova, A., Komarov, F., Vlasukova, L., Yuvchenko, V., Akilbekov, A., & Zdorovets, M. Peculiarities of latent track etching in SiO2/Si structures irradiated with Ar, Kr and Xe ions. // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. - 2016. – V. 374. –P. 121-124. https://doi.org/10.1016/j.nimb.2015.08.046
4. Hoppe, K., Fahrner, W. R., Fink, D., Dhamodoran, S., Petrov, A., Chandra, A., Saad A., Faupel F., Chakravadhanula V. S. K. & Zaporotchenko, V. An ion track based approach to nano-and micro-electronics. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. - 2008. – V. 266(8). – P. 1642-1646. https://doi.org/10.1016/j.nimb.2007.12.069
5. Benyagoub A., Toulemonde M. Ion tracks in amorphous silica. // Journal of Materials Research. – 2015. – V. 30(9). – P. 1529-1543. https://doi.org/10.1557/jmr.2015.75
6. Jensen J., Razpet A., Skupinski M., Poss G. Ion tracks in amorphous SiO2 irradiated with low and high energy heavy ions //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2006. – V. 245(1). – P. 269-273. https://doi.org/10.1016/j.nimb.2005.11.072
7. Jensen J., Razpet A., Skupinski M., Possnert G. Ion track formation below 1 MeV/u in thin films of amorphous SiO2 //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2006. – V. 243(1). – P. 119-126. https://doi.org/10.1016/j.nimb.2005.07.226
8. Demyanov S., Kaniukov E., Petrov A., & Sivakov, V. Positive magnetoresistive effect in Si/SiO2 (Cu/Ni) nanostructures. // Sensors and Actuators A: Physical. - 2014. – V. 216. – P. 64-68. https://doi.org/10.1016/j.sna.2014.04.022
9. Sivakov V., Kaniukov E. Y., Petrov A. V., Korolik O. V., Mazanik A. V., Bochmann A., ... & Demyanov, S. E. Silver nanostructures formation in porous Si/SiO2 matrix. // Journal of crystal growth. - 2014. – V. 400. – P. 21-26. https://doi.org/10.1016/j.jcrysgro.2014.04.024
10. Dauletbekova A., Kozlovskyi A., Akilbekov A., Seitbayev A., & Alzhanova, A. Synthesis of ZnO nanocrystals in a-SiO2/Si ion track templates. // Surface and Coatings Technology. - 2018. – 355. – P. 11-15. https://doi.org/10.1016/j.surfcoat.2018.04.008
11. Liu Y., Zeng J., Li C., Cao J., Wang Y., & Qian, Y. Formation of semiconductor Cu2−xSe rod-like crystals through a solvothermal reaction. // Materials research bulletin. - 2002. –V. 37(15). – P. 2509-2516. https://doi.org/10.1016/S0025-5408(01)00808-X
12. Xie Y., Wang W. Z., Qian Y. T., & Liu X. M. Solvothermal route to nanocrystalline CdSe. // Journal of Solid State Chemistry. – 1999. – V. 147(1). – P. 82-84. https://doi.org/10.1006/jssc.1999.8179
13. Yang J., Yang X. L., Yu S. H., Liu X. M., & Qian Y. T. CdTe nanocrystallites with different morphologies and phases by solvothermal process. Materials research bulletin. - 2000. – V. 35(9). – P. 1509-1515. https://doi.org/10.1016/S0025-5408(00)00343-3
14. Cowley J.M., Diffraction Physics. 3-rd Rev. Ed. Elsevier, Amsterdam. – 1995. – P. 205.
15. Yi H. C. and Moore J. J. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. // Journal of Materials Science. – 1990. – V. 25. – P.1159-1168.
16. Coustal, R., J. Chim. Phys. 38:277. - 1958.
17. Toyoji, H. and Hirohsi, Y., Jpn. Kokai Tokkyo Koho, JP02.173:622. – 1990.
18. Lakshmikvar, S.T., Sol. Energy Mater. Sol. Cells, 32:7. – 1994.
19. Metcalf H.C., Williams J.E., and Caskta, J.F. Modern Chemistry, Holt, Reinhart, Winston, New York. – 1982. – P. 54.
20. Parkin I.P., Chem. Soc. Rev. 25:199. – 1996.
21. Korzhuev M. A. Composition changes of superionic Cu2-xSe during chemical reactions // Fizika i himiâ obrabotki materialov. – 1991. – №. 3. – P. 131-134.
22. Yung-Jung Hsu, Chiu-Ming Hung, Yi-Feng Lin, Ben-Jie Liaw, Tarlok S. Lobana, Shih-Yuan Lu, and C. W. Liu, [Cu4{Se2P(Oi Pr)2}4]: A Novel Precursor Enabling Preparation of Nonstoichiometric Copper Selenide (Cu2-xSe) Nanowires // Chem. Mater. 2006. – V. 18. - P. 3323-3329. https://doi.org/10.1021/cm060478n
23. Xu X., Luo, F., Tang W., Hu J., Zeng H., Zhou Y. Enriching Hot Electrons via NIR Photon-Excited Plasmon in WS2@Cu Hybrids for Full-Spectrum Solar Hydrogen Evolution. // Adv. Funct. Mater. – 2018. – V. 28(43). – P. 1804055. https://doi.org/10.1002/adfm.201804055
Review
For citations:
Sarsekhan G.G., Akylbekova A.D., Baimukhanov Z.K., Amantaeva A.A. OBTAINING COPPER SELENIDE NANOWIRES IN SiO2/Si TRACK TEMPLATES. NNC RK Bulletin. 2024;(2):141-145. (In Kazakh) https://doi.org/10.52676/1729-7885-2024-2-141-145