ANALYTICAL REVIEW OF GLOBAL AND DOMESTIC SOURCES ON THE STUDY OF SEISMIC PROCESSES IN GLACIERS UNDER THE INFLUENCE OF CLIMATE CHANGE
https://doi.org/10.52676/1729-7885-2024-3-65-73
Abstract
Global climate change affects almost all spheres of human activity and the world ecosystem as a whole. Temperature rise, in particular, leads to accelerated melting of glaciers, which in turn leads to changes in the flow of glacier-fed rivers. This phenomenon inevitably affects the livelihood of settlements that use water from these rivers. Seismic and infrasound stations of the NNC monitoring network have been recording ground and air vibrations for many years. The accumulated database of instrumental observations contains information on climate changes in previous decades, such as the frequency and spatial distribution of glacial earthquakes. In this regard, it is proposed to analyze the changes in the glacier destruction regime based on the study of seismic and infrasound data obtained over the last two decades by the Kazakhstan monitoring network and to study the relationship of the found patterns with global climate change. This paper describes modern ideas about climate influence on mountain glaciers, general information about changes in the size and condition of glaciers in Kazakhstan. The possibility of using cryoseismology as a new tool for studying the dynamics of glacier changes is considered. The paper concludes with the results of the study of glacier dynamics using seismic methods in the Tien-Shan area according to the literature data.
About the Authors
N. N. MikhailovaKazakhstan
Kurchatov
A. S. Mukambayev
Kazakhstan
Kurchatov
Ye. N. Kazakkov
Kazakhstan
Kurchatov
V. G. Morozov
Kazakhstan
Kurchatov
U. A. Igibayev
Kazakhstan
Kurchatov
References
1. S.Kutuzov, O.Solomina. Sovremennye izmeneniya gornykh lednikov i klimat. Materialy mezhdunarodnogo foruma «Ustoychivoe razvitie gornykh territoriy». Sankt-Peterburg, 12–13 oktyabrya 2023g.
2. M.Zemp, M.Huss, E.Thibert et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568, 382-386. 2019.
3. S. Dankendorf, M.Marcos, Guy Woppelmann, Riccardo Riva. Reassessment of 20th century global mean sea level rise. Environmental sciences. May 22, 2017. 114 (23) 5946–5951.
4. Bushueva I.S., Solomina O.N. Kolebaniya lednika Kashkatash v XVII-XXI v.v. po kartograficheskim, dendrokhronologicheskim i likhenometricheskim dannym //Led i sneg. 2012. №2(118). S.121-130.
5. Spetsial'nyy doklad MGEIK «Okean i kriosfera», 2019 Special Report on the Ocean and Cryosphere in a Changing Climate — (ipcc.ch)
6. I.V.Severskiy, A.L.Kokarev, N.V.Pimankina. Snezhno-ledovye resursy Kazakhstana. Almaty. 2012. 244s.
7. M.Dyurgerov, M.Meier Glaciers and Changing Earth System.: A 2004 Snapshot. Occasional Paper 58, Institute of Arctic and Alpine Research, 2005.
8. E.N.Vilesov. Izmenenie razmerov i sostoyaniya lednikov Kazakhstana za 60 let (1955-2015g.g.). Led i sneg. T.58. №2 2018. S.159-170.
9. E.N.Vilesov. Dinamika i sovremennoe sostoyanie oledeneniya gor Kazakhstana. Almaty: KazNU, 2016. 268s.
10. E.N.Vilesov, V.I.Morozova, I.V.Severskiy. Oledenenie Dzhungarskogo (Zhetysu) Alatau: proshloe, nastoyashchee, budushchee. Almaty: KazNU, 2013, 244s.
11. E.Podolsky, F.Walter. Cryoseismology. Reviews of Geophysics. 2016. 708-758. 10.1002/2016RG000526.
12. F.Nansen, Fhartest North, vol.2, 1897, Harper and Brothers Publ., New York.
13. Adams R.D., Antarctic earthquakes, Nature, 331,665. 1988.
14. Adams R.D., A.A. Hughes, B.M.Zhang. (1985) A confirming earthquake in continental Antarctica, Geophys. J.R.Astron. Soc., 81, 489-492.
15. Adams R.D. (1969). Small earthquakes in Victoria Land, Antarctica. Nature, 224, 255-256.
16. Ekström G., M.Nettles and G.A.Abers (2003). Glacial earthquakes, Science, 302 (5645), 622-624, doi:10.1126/science.1088057.
17. Ekström G., M.Nettles and V.C.Tsai (2006), Seasonality and increasing frequency of Greenland glacial earthquakes, Science, 311(5768), 1756-1758, doi:10.1126/science.1122112.
18. Larose E., et al. (2015) Environmental seismology: What can we learn on earth surface process with ambient noise? J.Appl.Geophys., 116, 62-74, doi:10.1016/j.jappgeo.2015.02.001.
19. Tsai V.C. and G.Ekström (2007). Analysis of glacial earthquakes, J.Geophys. Res., 112, F03S22, doi:10.1029/2006JF000596.
20. A.V.Fedorov, V.E.Asming, S.V.Baranov, A.N.Vinogradov, Z.A.Evtyugina, V.A.Goryunov. Seysmologicheskie nablyudeniya za aktivnost'yu lednikov arkhipelaga Shpitsbergen. Vestnik MGTU, tom 19, №1/1, 2016g. s.151-159.
21. A.V.Fedorov, V.E.Asming. Nizkochastotnye zemletryaseniya arkhipelaga Shpitsbergen // Kompleksnye issledovaniya prirody Shpitsbergena // Materialy mezhdunarodnoy nauchnoy konferentsii. Murmansk, 1–3 noyabrya, 2012g. M., 2012. Vyp.11. S.249-253.
22. A.Köhler, Ch.Nuth, J.Kohler, E.Berthier, C.Weidle, J.Schweitzer. A 15-year record of frontal glacier ablation rates estimated from seismic data. Geophysical Research Letters. 43(23), 12155-12164, doi.org/10.1002/2016GL070589
23. A.Köhler, Ch.Nuth, J.Schweitzer, C.Weidle, S.Gibbons. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard. Polar Research, Vol 34, 26178, 19 pp, doi:10.3402/polar. v34.26178
24. A.Köhler, M.Pętlicki, Pierre-Marie Lefeuvre, G.Buscaino, Ch.Nuth, Ch.Weidle. Contribution of calving to frontal ablation quantified from seismic and hydroacustic observations calibrated with lidar volume measurements. The Cryosphere, 13, 3117–3137, doi.org/10.5194/tc-13-3117-2019
25. A.Köhler, V.Maupin, Ch.Nuth, Ward Van Pelt. Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard. Annals of Glaciology. 2019, 60 (79), 23-36, doi.org/10.1017/aog.2019.15
26. D.Tetzner Ivovich. Crio-sismología: Qué pasa con los glaciares cuando tiembla? 2021. //glaciarschilenos.org.
27. Kanao, M. (2018a). A Decade of Advances in Cryoseismology. In Polar Seismology – Advances and Impact. IntechOpen.
28. Kanao, M. (2018b). A New Trend in Cryoseismology: A Proxy for Detecting the Polar Surface Environment. Polar Seismology – Advances and Impact, 75.
29. O.Lamb, J.Lees, L.Marin, J.Lazo, A.Rivera, M.Shore, S.Lee. Investigating potential icequakes at Llaima volcano, Chile. // Volcanica. 2020. Chile. P.29-42.
30. E.Podolskiy, K.Fujita, S.Sunako, A.Tsushima, R.Kayastha. Nocturnal Thermal Fracturing of a Himalayan Debris-Covered Glacier Revealed by Ambient Seismic Noise. // Geophysical Research Letters. 10.1029/2018. P.9699-9709.
31. Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M. S., & Grigsby, S. (2016). Glacier crevasses: Observations, models, and mass balance implications. Reviews of Geophysics, 54(1), 119–161. https://doi.org/10.1002/2015RG000504
32. Cook, J. M., Hodson, A. J., & Irvine-Fynn, T. D. L. (2016). Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrological Processes, 30(3), 433–446. https://doi.org/10.1002/hyp.10602
33. Sakai, A., & Fujita, K. (2017). Contrasting glacier responses to recent climate change in high-mountain Asia. Scientific Reports, 7(1), 13717. https://doi.org/10.1038/s41598-017-14256-5
34. Usupaev Sh.E., Asming V.E., Sharshebaev A.K., Altynbek uulu T., Rakhmatilla uulu Z., Anarkulov B.A. O zemletryaseniyakh glyatsiotektonicheskogo kharaktera gornykh stran na primere lednika Engilchek v basseyne reki Sary-Dzhaz Kyrgyzskogo Tyan'-Shanya //Izvestiya VUZov Kyrgyzstana, № 12, 2019. S. 40–49.
35. Mikhaylova N.N., Komarov I.I. Lednikovye zemletryaseniya Tsentral'nogo Tyan'-Shanya / N.N. Mikhaylova, I.I. Komarov / Vestnik NYaTs RK. - 2009 - Vyp 3. S. 120–126.
36.
Review
For citations:
Mikhailova N.N., Mukambayev A.S., Kazakkov Ye.N., Morozov V.G., Igibayev U.A. ANALYTICAL REVIEW OF GLOBAL AND DOMESTIC SOURCES ON THE STUDY OF SEISMIC PROCESSES IN GLACIERS UNDER THE INFLUENCE OF CLIMATE CHANGE. NNC RK Bulletin. 2024;(3):65-73. (In Russ.) https://doi.org/10.52676/1729-7885-2024-3-65-73