Preview

NNC RK Bulletin

Advanced search

INTERACTION OF DEUTERIUM PLASMA WITH A TUNGSTEN SURFACE AFTER CARBIDIZATION IN THE BPD

https://doi.org/10.52676/1729-7885-2024-3-115-122

Abstract

This work is devoted to studying the effect of mixed W–C layers on the change in the surface morphology and structuralphase states of the tungsten surface layer under the influence of D plasma. Experiments on carbidization and plasma irradiation were carried out on a plasma-beam installation (PBI) at different ion energies and surface temperatures. Methane (CH4) was used as a working gas during carbidization, and deuterium was used for plasma irradiation. The effect of D plasma with an ion energy of 500 eV on the tungsten surface with mixed layers led to the destruction of carbide compounds at a temperature of ~1750 °C and further erosion of tungsten. However, at a temperature of ~900 °C, mixed layers based on two phases (WC and W2C) have a high resistance to deuterium action, as evidenced by an insignificant change in the phase content.

About the Authors

I. A. Sokolov
RSE NNC RK Branch “Institute of Atomic Energy”; NPJSC "University named after Shakarim of Semey"
Kazakhstan

Kurchatov

Semey



A. Zh. Miniyazov
RSE NNC RK Branch “Institute of Atomic Energy”
Kazakhstan

Kurchatov



G. K. Zhanbolatova
RSE NNC RK Branch “Institute of Atomic Energy”
Kazakhstan

Kurchatov



T. R. Tulenbergenov
RSE NNC RK Branch “Institute of Atomic Energy”; NPJSC "University named after Shakarim of Semey"
Kazakhstan

Kurchatov

Semey



N. M. Mukhamedova
RSE NNC RK Branch “Institute of Atomic Energy”
Kazakhstan


A. Zh. Kaiyrbekova
RSE NNC RK Branch “Institute of Atomic Energy”
Kazakhstan

Kurchatov



A. A. Agatanova
RSE NNC RK Branch “Institute of Atomic Energy”
Kazakhstan

Kurchatov



References

1. Pintsuk G., Hasegawa A. Tungsten as a Plasma-Facing Material // Reference Module in Materials Science and Materials Engineering. – 2019. https://doi.org/10.1016/B978-0-12-803581-8.11696-0

2. Bolt H., Barabash V., Federici G. et al. (2002). Plasma facing and high heat flux materials-needs for ITER and beyond // Journal of Nuclear Materials. – 2002. – Vol. 307. – P. 43.

3. Mayer M. et al. Tungsten erosion and redeposition in the all-tungsten divertor of ASDEX Upgrade // Physica scripta. – 2009. – T. 138. https://doi.org/10.1088/0031-8949/2009/T138/014039

4. Ueda Y., Schmid K., Balden M. et al. Baseline high heat flux and plasma facing materials for fusion // Nucl. Fusion. – 2017. – Vol. 57. – P. 092006. https://doi.org/10.1088/1741-4326/aa6b60

5. Budaev V.P., Fedorovich S.D., Dedov A.V., et.al. High-heat flux tests of tungsten divertor mock-ups with steady-state plasma and e-beam // Nuclear Materials and Energy. – 2020. – Vol. 25. https://doi.org/10.1016/j.nme.2020.100816

6. Muhammad Luqman Khalid et al. (2019) // Mater. Res. Express. – 2019. – Vol. 6. – P. 066551. https://doi.org/10.1088/2053-1591/ab087f

7. Rubel M, Philipps V, Huber A, and Tanabe T. Formation of carbon containing layers on tungsten test limiters // Physica Scripta. – 1999. – T. 81. – P. 61–63.

8. Ueda Y., et al. Carbon impurity behavior on plasma facing surface of tungsten // Fusion Engineering and Design. – 2006. – Vol. 81. – Р. 233–239.

9. G. K. Zhanbolatova, V. V. Baklanov, T. R. Tulenbergenov, A. Zh. Miniyazov, I. A. Sokolov Carbidization of the tungsten surface in a beam-plasma discharge // NNC RK Bulletin. – 2020. – Issue 4. – P. 77–81. (In Russ.)

10. Baklanov V., Zhanbolatova G., Skakov M., et al. Study of the Temperature Dependence of a Carbidized Layer Formation on the Tungsten Surface Under Plasma Irradiation // Materials Research Express. – 2022. – Vol. 9. – P. 016403. https://doi.org/10.1088/2053-1591/ac4626

11. Zhanbolatova G.K., Miniyazov A.Z., Tulenbergenov T.R., Sokolov I.A., Bukina O.S. Investigation of tungsten surface carbidization under plasma irradiation // NNC RK Bulletin. – 2021. Issue 3. – P. 37–43. (In Russ)

12. Skakov M.K., Baklanov V.V., Zhanbolatova G.K., Miniyazov A.Zh., Kozhakhmetov Ye.A., Gradoboev A.V. Research of the structural-phase state of tungsten surface layer cross-section after carbidization in a beam-plasma discharge usage electron microscopy methods // NNC RK Bulletin. – 2023. – Issue 2. – P. 89–96. https://doi.org/10.52676/1729-7885-2023-2-89-96

13. Skakov M.K., Miniyazov A.Z., Batyrbekov E.G, et al. Influence of the Carbidized Tungsten Surface on the Processes of Interaction with Helium Plasma // Materials. – 2022. – Vol. 15. – P. 7821. https://doi.org/10.3390/ma15217821

14. Patent RK na poleznuyu model' № 2080. Imitatsionnyy stend s plazmenno-puchkovoy ustanovkoy / Kolodeshnikov A.A., Zuev V.A., Ganovichev D.A., i dr. – opubl. 15.03.2017, Byul. No. 5. (In Russ.)

15. Tulenbergenov T.R., Skakov M.K., Miniyazov A.Zh., Sokolov I.A., Kayyrdy G.K. The role of a simulation bench with plasma- beam installation in researches of plasma-surface interection // NNC RK Bulletin. – 2019. – Issue 4. – P. 51–58.(In Russ.)

16. S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, et.al. Crystallography Open Database – an open-access collection of crystal structures // J. Appl. Cryst. – 2009. – Vol. 42. – P. 726–729.

17. Skakov Mazhyn, Zhanbolatova Gainiya, Miniyazov Arman, Tulenbergenov Timur, Sokolov Igor, Sapatayev Yerzhan, Kozhakhmetov Yernat, Bukina Olga. Impact of High-Power Heat Load and W Surface Carbidization on its Structural-Phase Composition and Properties // Fusion Science and Technology. – 2021. – Vol. 77. – Р. 57–66. https://doi.org/10.1080/15361055.2020.1843885

18. Skakov M.K., Baklanov V.V., Zhanbolatova G.K., et al. The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge // AIMS Materials Science. – Vol. 10(3). – P. 541–555.

19. Gorelik S. S., Dobatkin S. V., Kaputkina L. M. Rekristallizatsiya metallov i splavov. – Moscow: MISIS. – 2005. – 432 p.

20. Maier, H., Rasinski, M., von Toussaint, U., Greuner, H., Böswirth, B., Balden, M. Kinetics of carbide formation in the molybdenum–tungsten coatings used in the ITER-like Wall // Physica Scripta. – 2016. – T. 167. – P. 014048. https://doi.org/10.1088/0031-8949/t167/1/014048

21. Linsmeier Ch., Reinelt M., Schmid K. Surface chemistry of first wall materials – from fundamental data to modeling // Journal of Nuclear Materials. – 2011. – Vol. 415. – Issue 1. – P. S212–S218. https://doi.org/10.1016/j.jnucmat.2010.08.056

22. Begrambekov L.B. Protsessy v tverdom tele pod deystviem ionnogo i plazmennogo oblucheniya: Uchebnoe posobie. – Moscow: MIFI. – 2008. – 196 p. (In Russ)

23. Tu H., Li C., Shi L. The erosion and retention properties of α-WC films by low-energy deuterium ion irradiation // Applied Surface Science. – 2023. – Vol. 608. – P. 155133.

24. P. Jenus et al. Deuterium retention in tungsten, tungsten carbide and tungsten-ditungsten carbide composites // Journal of Nuclear Materials. – 2023. – Vol. 581. – P. 154455.

25. Z. Zhao, F. Liu, L. Cao, et al. Investigation of indentation response, scratch resistance, and wear behavior of tungsten carbide coatings fabricated by two-step interstitial carburization on tungsten // Ceramics International. – 2021. – Vol. 47. – P. 30636–30647.


Review

For citations:


Sokolov I.A., Miniyazov A.Zh., Zhanbolatova G.K., Tulenbergenov T.R., Mukhamedova N.M., Kaiyrbekova A.Zh., Agatanova A.A. INTERACTION OF DEUTERIUM PLASMA WITH A TUNGSTEN SURFACE AFTER CARBIDIZATION IN THE BPD. NNC RK Bulletin. 2024;(3):115-122. (In Russ.) https://doi.org/10.52676/1729-7885-2024-3-115-122

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)