METHODOLOGY OF SELECTING CEMENT MATRIX COMPOSITION FOR IMMOBILIZATION OF IRRADIATED URANIUM-GRAPHITE FUEL
https://doi.org/10.52676/1729-7885-2024-4-43-53
Abstract
The Impulse Graphite Reactor (IGR) is a unique nuclear facility in the world. The core of the research reactor is a stack of uranium-graphite blocks (fuel elements) enriched to 90 wt. % in 235U isotope. As part of the project on conversion of the IGR reactor to low-enriched uranium fuel, the specialists of the Institute of Atomic Energy (IAE) studied the possibility of immobilizing the first core in a cement matrix.
Research into the immobilization process included both the formation of technical requirements for the uranium-graphite fuel matrix, determined by the conversion conditions, international and national standards, and the selection of the composition and ratios of the matrix components.
The paper presents the results of an analysis of modern achievements in the field of immobilization of radioactive waste and irradiated graphite, the formation of matrix acceptability criteria for the immobilization of highly enriched IGR fuel, and methods for determining whether the matrix properties correspond to the established criteria. The matrix compositions for immobilization of the irradiated fuel of the IGR reactor were selected experimentally, based on such characteristics of the cement slurry as bleed water, viscosity, setting time, uniformity of volume change, homogeneity and strength of the samples. To determine the above characteristics, the methods used to determine the characteristics of cement slurries were used and improved. They have proven their suitability.
The requirements used to select the composition of matrices for immobilization of spent uranium-graphite fuel of the IGR reactor turned out to be applicable and sufficiently constructive, and can also be recommended for solving issues of selecting the consistency of matrices for immobilization of other types of RW.
About the Authors
O. S. BukinaKazakhstan
Kurchatov; Semey
Yu. Yu. Baklanova
Kazakhstan
Kurchatov
M. N. Azbergenov
Kazakhstan
Kurchatov
M. А. Kuksa
Kazakhstan
Kurchatov
References
1. Izmerenie moshchnosti izlucheniya ot obluchennogo yadernogo topliva reaktora IGR i analiz radionuklidnogo sostava OYaT: otchet o NIR / Filial IAE RGP NYaTs RK; A.G. Korovikov. – Kurchatov, 2017. – No. 36-100-05/375vn. ot 01.03.17.
2. Nuclear Waste Forms [Text] / S.V. Stefanovsky, S.V. Yudintsev, R. Giere, G.R. Lump-kin // Energy, Waste and the Environment: A Geological Perspective. Geological Society, London.– 2004.– Special Publication.– Vol. 236. – P. 37–63.
3. An introduction to nuclear waste immobilization/ M.I. Ojovan, W.E. Lee.-Second Edition. Elsevier.
4. Tekhnologicheskie i organizatsionnye aspekty obrashcheniya s radioaktivnymi otkhodami// IAEA-TCS-27, Vena, 2005.
5. Pravila organizatsii sbora, khraneniya i zakhoroneniya radioaktivnykh otkhodov i otrabotavshego yadernogo topliva, utv. prikazom Ministra energetiki Respubliki Kazakhstan ot 8 fevralya 2016 goda No. 39 (s izmeneniyami ot 21.09.2020 g.).
6. ST RK 3723-2021. Otkhody radioaktivnye tsementirovannye. Obshchie tekhnicheskie trebovaniya.
7. Stroenie i gidroliticheskaya ustoychivost' samariy, gafniy i uransoderzhashchikh steklokristallicheskikh materialov dlya immobilizatsii tverdykh radioaktivnykh otkhodov/ G.A. Malinina. – Moscow, 2016.
8. Apse V.A., Shmelev A.N. Yadernye tekhnologii: uchebnoe posobie. – Moscow: MIFI, 2008.– 128 p.
9. Encapsulation of HEU / Graphite Particulate – Potential Formulations and Other Considerations, DEC_0988_A, S Farris, Sellafield LTD, 2020.
10. Tumanov Yu.N. Plazmennye, vysokochastotnye, mikrovolnovye i lazernye tekhnologii v khimikometallurgicheskikh protsessakh. – Moscow: Fizmatlit, 2010.– 968 p.
11. Tekhnologicheskie i organizatsionnye aspekty obrashcheniya s radioaktivnymi otkhodami// IAEA-TCS-27, Vena, 2005.
12. N.R. Rakhimova, R.Z. Rakhimov, O.V. Stoyanov Kompozitsionnye vyazhushchie dlya immobilizatsii toksichnykh i radioaktivnykh otkhodov / Vestnik kazanskogo tekhnologicheskogo universiteta. – 2013. – Vol. 16. – No. 4. – P. 175–182.
13. Protokol soveshchaniya po voprosu «Trebovaniya normativno-pravovykh aktov Respubliki Kazakhstan, primenimykh k obrashcheniyu s RAO, kotorye budut polucheny v rezul'tate razbavleniya i konditsionirovaniya obluchennogo vysokoobogashchennogo uran-grafitovogo topliva issledovatel'skogo reaktora IGR» ot 14-15 noyabrya 2019 g, KAENK ME RK, g. Nur-sultan, Kazakhstan.
14. The behaviours of cementitious materials in long term storage and disposal of radioactive waste. Results of a coordinated research project. IAEA-TECDOC-1701. Vienna, 2013.
15. GOST 310.4-81. Tsementy. Metody opredeleniya predela prochnosti pri izgibe i szhatii. Cements. Methods of bending and compression strength determination.
16. 16 GOST 310.6-85. Tsementy. Metody opredeleniya vodootdeleniya. Cements. Method of water separation determination.
17. GOST 310.3-76. Tsementy. Metody opredeleniya normal'- noy gustoty, srokov skhvatyvaniya i ravnomernosti izmeneniya ob"ema. Cements. Methods for determination of standard consistency, times of setting and soundness.
18. GOST 10180-2012. Betony. Metody opredeleniya prochnosti po kontrol'nym obraztsam. (EN 12390-1:2009, NEQ), (EN 12390-2:2009, NEQ), (EN 12390-3:2009, NEQ), (EN 12390-4:2009, NEQ), (EN 12390-5:2009, NEQ), (EN 12390-6:2009, NEQ). Concretes. Methods for strength determination using reference specimens.
19. GOST 22685-89. Formy dlya izgotovleniya kontrol'nykh obraztsov betona. Tekhnicheskie usloviya. Moulds for making control specimens of concrete. Specifications
20. GOST 12730.1-2020. Betony. Metody opredeleniya plotnosti. Concretes. Methods of determination of density.
Supplementary files
Review
For citations:
Bukina O.S., Baklanova Yu.Yu., Azbergenov M.N., Kuksa M.А. METHODOLOGY OF SELECTING CEMENT MATRIX COMPOSITION FOR IMMOBILIZATION OF IRRADIATED URANIUM-GRAPHITE FUEL. NNC RK Bulletin. 2024;(4):43-53. (In Russ.) https://doi.org/10.52676/1729-7885-2024-4-43-53