Preview

NNC RK Bulletin

Advanced search

EVALUATION OF THE EFFECT OF MECHANOSYNTHESIS PARAMETERS ON THE MORPHOLOGY OF A MAGNESIUM-BASED POWDER COMPOSITION

https://doi.org/10.52676/1729-7885-2025-1-64-71

Abstract

This article presents an analysis of the dependence of phase and morphological changes in the powder composition of the Mg-Ni-Ce system on the parameters of mechanical synthesis. During the mechanical synthesis process, it was found that, in addition to acceleration and duration parameters, the ratio of powder to milling balls has a significant influence on changes in the structural characteristics of the material. The results of the microscopic analysis showed that with a powderto-ball ratio of 1:10, the average particle size in the synthesized mixtures is 13.76 µm. At the same time, when applying a ratio of 1:30, the particle size decreases to 7.59 µm. It was established that magnesium is the primary phase in all samples. However, at a ratio of 1:30, the formation of the hexagonal crystal lattice of the MgNi phase and the emergence of the CeNi phase are identified.

About the Authors

N. M. Mukhamedova
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



Zh. N. Ospanova
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



O. Oken
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



A. Zh. Miniyazov
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



K. S. Shaikieva
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



А. A. Sabyrtayeva
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



T. D. Akhmedi
Branch “Institute of Atomic Energy” RSE NNC RK

Kurchatov



References

1. Arto I., Capellán-Pérez I., Lago R., Bueno G., Bermejo R. The energy requirements of a developed world // Energy Sustain Dev. – 2016. – Vol. 33. – P. 1–13.

2. Development of Hydrogen Energy in Kazakhstan: Tokayev Meets with Head of German Svevind Group // https://kazpravda.kz/n/razvitie-vodorodnoy-energetiki-vkazahstane-tokaev-vstretilsya-s-glavoy-nemetskoysvevind-group/]

3. Predlozhenie Tokaeva lideram tyurkskikh stran o sozdanii mezhdunarodnogo konsortsiuma po razvitiyu vodorodnoy energetiki (In Russ.)]

4. The Head of State held a meeting on the development of the electric power industry // https://akorda.kz/en/the-head-of-state-held-a-meeting-onthe-development-of-the-electric-power-industry-2641630]

5. Wiedenhofer D., Lenzen M., Steinberger J. K. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications // Energy policy. – 2013. – Vol. 63. – P. 696– 707.

6. Mesarić P., Krajcar S. Home demand side management integrated with electric vehicles and renewable energy sources // Energy and Buildings. – 2015. – Vol. 108. – P. 1–9.

7. Jacobson M. Z. Review of solutions to global warming, air pollution, and energy security // Energy & Environmental Science. – 2009. – Vol. 2. – No. 2. – Vol. 148–173.

8. Acar C., Dincer I. Review and evaluation of hydrogen production options for better environment // Journal of cleaner production. – 2019. – Vol. 218. – P. 835–849.

9. Niaz S., Manzoor T., Pandith A. H. Hydrogen storage: Materials, methods and perspectives // Renewable and Sustainable Energy Reviews. – 2015. – Vol. 50. – P. 457– 469.

10. Ley, M. B., Jepsen, L. H., Lee, Y.-S., Cho, Y. W., Bellosta von Colbe, J. M., Dornheim, M., et al. Complex hydrides for hydrogen storage – new perspectives // Materials Today. – 2014.– Vol. 17(3). – P. 122–128.

11. Shin-ichi Orimo, Yuko Nakamori, Jennifer R. Eliseo, Andreas Züttel, and Craig M. Jensen. Complex Hydrides for Hydrogen Storage // Chemical reviews. – 2007. – Vol. 107. – P. 4111–4132.

12. Jiuyi Zhu, Yuchen Mao, Hui Wang, Jiangwen Liu, Liuzhang Ouyang, and Min Zhu. Reaction Route Optimized LiBH4 for High Reversible Capacity Hydrogen Storage by Tunable Surface-Modified AlN // ACS Appl. Energy Mater. – 2020. – Vol. 3(12). – P. 1964–11973.

13. Zhenglong Li, et al. Catalyzed LiBH4 Hydrogen Storage System with In Situ Introduced Li3BO3 and V for Enhanced Dehydrogenation and Hydrogenation Kinetics as Well as High Cycling Stability // ACS Appl. Energy Mater. – 2022. – Vol. 5(1). – P. 1226–1234.

14. Haizhen Liu et al. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration // Journal of Energy Chemistry. – 2021. – Vol. 52. – P. 428–440.

15. Lukashev R.V. Vodorodakkumuliruyushchie i vodorod-generiruyushchie sistemy MgH2–C i AlH3–S // Al'ternativnaya energetika i ekologiya. – 2008. – No. 2(58). – P. 39–46. (In Russ.]

16. Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – P. 18179–18192.

17. J. Song, J. She, D. Chen, F. Pan. Latest research advances on magnesium and magnesium alloys worldwide // Journal of Magnesium and Alloys. – 2020. Vol. 8. – P. 1–41.

18. Нuang, C., Feng, Y., Wang, J., Liu, C., & Li, D. Effects of noble metal modification on the performance of LaNiO3 catalyst for hydrogen production from ethanol steam reforming // International Journal of Hydrogen Energy. – 2019. – Vol. 44(22). – P. 11326–11337.

19. Wang H., Lin, H. J., Cai, W. T., Ouyang, L. Z., Zhu, M. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – A review of recent progress // Journal of Alloys and Compounds. – 2016. Vol. 658. – P. 280–300. https://doi.org/10.1016/j.jallcom.2015.10.090

20. Ding, Z., Li, Y., Lu, Y., et al. Tailoring MgH₂ for hydrogen storage through nanoengineering and catalysis // Journal of Magnesium and Alloys. – 2022. – Vol. 10, Issue 11. – P. 2946–2967. https://doi.org/10.1016/j.jma.2022.09.028

21. Li, Q., Lu, Y., Luo, Q., et. al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mgbased hydrogen storage materials // Journal of Magnesium and Alloys. – 2021. – Vol. 9, Issue 6. – P. 1922–1941. https://doi.org/10.1016/j.jma.2021.10.002

22. Cong Peng, Yongtao Li, Qingan Zhang. Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process // Journal of Alloys and Compounds. – 2022. – Vol. 900. – P. 163547. https://doi.org/10.1016/j.jallcom.2021.163547

23. Lishuai Xie, Jinshan Li, Tiebang Zhang, Hongchao Kou, De/hydrogenation kinetics against air exposure and microstructure evolution during hydrogen absorption/desorption of Mg-Ni-Ce alloys // Renewable Energy. – 2017. – Vol. 113. – P. 1399–1407. https://doi.org/10.1016/j.renene.2017.06.102

24. Lin, H.-J., Zhang, C., Wang, H., Ouyang, L., Zhu, Y., Li, L., et al. Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gassolid reaction // Journal of Alloys and Compounds. – 2016. – Vol. 685. – P. 272–277. https://doi.org/10.1016/j.jallcom.2016.05.286

25. Varin R.A, Zbroniec L, Polanski M, Bystrzycki J. A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides // Energies. – 2011. – Vol. 4. – P. 1–25.

26. Huot, J., Ravnsbæk, D. B., Zhang, J., Cuevas, F., Latroche, M., & Jensen, T. R. Mechanochemical synthesis of hydrogen storage materials // Progress in Materials Science. – 2013. – Vol. 58(1). – P. 30–75. https://doi.org/10.1016/j.pmatsci.2012.07.001

27. Kozhakhmetov, Y., Skakov, M., Wieleba, W., Sherzod, K., Mukhamedova, N. Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering // AIMS Materials Science. – 2020. – Vol. 7 (2). – No. 182. – P. 182–191.

28. Floriano R. et al. Cold rolling of MgH2 powders containing different additives // Int. J. Hydrogen Energy. Elsevier Ltd. – 2013. – Vol. 38 (36). – P. 16193–16198.

29. Zhou C., Peng Y., Zhang Q. Growth kinetics of MgH2 nanocrystallites prepared by ball milling // Journal of Materials Science & Technology. – 2020. – Vol. 50. – P. 178–183.

30. Pukazhselvan D., Capurso G., Maddalena A., Lo Russo S., Fagg D.P. Hydrogen storage characteristics of magnesium impregnated on the porous channels of activated charcoal scaffold // International journal of hydrogen energy. – 2014. – Vol. 39. – No. 35. – P. 20045–20053.

31. Rahmalina D. et al. The recent development on MgH2 system by 16 wt% nickel addition and particle size reduction through ball milling: a noticeable hydrogen capacity up to 5 wt% at low temperature and pressure // International Journal of Hydrogen Energy. – 2020. – Vol. 45. – No. 53. – P. 29046–29058.

32. Dornheim M. et al. Hydrogen storage in magnesium-based hydrides and hydride composites // Scripta Materialia. – 2007. – Vol. 56. – No. 10. – P. 841–846.

33. Xu, Y.; Li, Y.; Hou, Q.; Hao, Y.; Ding, Z. Ball Milling Innovations Advance Mg-Based Hydrogen Storage Materials Towards Practical Applications // Materials. – 2024. – Vol. 17. – P. 2510. https://doi.org/10.3390/ma17112510

34. Chen X, Xie FQ, Ma TJ, et al. Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy // Journal of Alloys and Compounds. – 2015. – Vol. 646. – P. 490–496.


Supplementary files

Review

For citations:


Mukhamedova N.M., Ospanova Zh.N., Oken O., Miniyazov A.Zh., Shaikieva K.S., Sabyrtayeva А.A., Akhmedi T.D. EVALUATION OF THE EFFECT OF MECHANOSYNTHESIS PARAMETERS ON THE MORPHOLOGY OF A MAGNESIUM-BASED POWDER COMPOSITION. NNC RK Bulletin. 2025;(1):64-71. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-1-64-71

Views: 178


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)