Preview

NNC RK Bulletin

Advanced search

METHODOLOGY FOR THE STUDY OF CORIUM AGING PROCESSES

https://doi.org/10.52676/1729-7885-2025-1-104-112

Abstract

To date, the corium research is one of the main issues in the framework of improving nuclear safety and is one of the tasks of conducting a successful procedure to eliminate the consequences of an accident with a core meltdown at the NPP. One of the important tasks for the procedure of eliminating the consequences of an accident at the NPP is to understand the physical state of the core melt of an emergency reactor (corium) in order to make decisions on its removal from the contents and further handling. The difficulty in assessing the structure and properties of the corium, which undergo the changes as a result of cooling with water and prolonged exposure in a melt content or trap (the process of corium “aging”), is in its high radioactivity.

Corium includes elements of the core (uranium fuel, zirconium cladding), elements of metal structures, structural materials, concrete, etc. There are five known cases of non-design accidents with the formation of corium: at the reactor of the Three Mile Island-2 NPP (USA, 1979), at the Chernobyl NPP (Ukraine, 1986) and three cases of corium formation were observed during the accident at the Fukushima -1 NPP (Japan, 2011). All these incidents have shown the relevance of improving safety systems at nuclear installations, as well as the need to study the properties of corium in order to work with it.

Due to the high radiation hazard, the studies of the corium properties are carried out on model samples. The model corium in the “Institute of Atomic Energy” Branch of RSE NNC RK can be obtained both under laboratory conditions and at the experimental benches of the Institute. The corium properties are different and depend on the initial composition of the charge (components modeling the core and structural materials) and the conditions for modeling an out-of-design accident (melting temperature, the principle of the melt cooling, the presence of residual power density, the method of retaining the melt, etc.).

The paper presents the results of the analysis of modern achievements in the field of corium study, as well as methodological recommendations for the study of corium aging processes based on the experience of foreign specialists (Japan, Russian Federation) [1–4] and own long-term developments of the specialists of the branch “Institute of Atomic Energy” RSE NNC RK.

The methodological recommendations given in this paper can be used directly to study the process of changing the corium properties under various conditions, as well as to predict the aging process for a given period of its exposure in the content of a reactor installation or a subreactor melt trap.

About the Authors

Yu. Yu. Baklanova
Branch “Institute of Atomic Energy” RSE NNC RK
Kazakhstan

Kurchatov



O. S. Bukina O. S. Bukina O. S. Bukina
Branch “Institute of Atomic Energy” RSE NNC RK; NP JSC “Shakarim University, Semey”
Kazakhstan

Kurchatov

Semey



V. V. Baklanov
Branch “Institute of Atomic Energy” RSE NNC RK

Kurchatov



References

1. J.R. Wolf, J.L. Rempe. TMI-2 Vessel Investigation Project Integration Report. Idaho National Engineering Laboratory, TMI V(93)EG10, October 1993.

2. Asmolov V.G. et al. RASPLAV Final Report. Attachment С Properties Studies: Methodology and Results // OECD RASPLAV Project, Russian Research Centre “Kurchatov Institute”, Moscow, 2000.

3. Barachin M. Thermodynamics of Corium: Phase diagrams, Databases // EUROCOURSE 2003, Corium: Severe Accident R&D and Nuclear Power Plant Safety, Aix en Provence, France, January 27–31, 2003.

4. Nakahara, Y. Technical development on burn-up credit for spent LWR fuels JAERITECH 2000-071 / Y. Nakahara, K. Suyama, T. Suzaki. – Ibaraki: Japan Atomic Energy Research Institute, 2000. – 394 p.

5. Ryzhov S.N., Bogdanova E.V., Ryzhkov A.A., Pugachev P.A., Tikhomirov G.V., Ternovykh M.Yu., Aleeva T.B. Analiz metodov i tekhnologiy otsenki sostava koriuma, obrazovavshegosya v rezul'tate avarii na AES «Fukushima Daiichi» // Global'naya Yadernaya Bezopasnost'. – 2022. – No. 3. – P. 5–21. (In Russ.)] https://doi.org/10.26583/gns-2022-03-01

6. Rossiyskie uchenye zavershili proekt po prognozirovaniyu svoystv koriuma AES “Fukushima Daiichi” // Nauchno-delovoy portal “Atomnaya energiya 2.0”. (In Russ.)] URL: https://www.atomic-energy.ru/news/2021/08/02/116094 (дата обращения: 20.07.2024).

7. Neytronno-fizicheskoe modelirovanie podkriticheskoy sistemy s chastitsami koriuma i vodoy iz mezhdunarodnogo benchmarka / A.D. Smirnov, E.V. Bogdanova, P.A. Pugachev [i dr.] // Izvestiya vysshikh uchebnykh zavedeniy. Yadernaya energetika. – 2020. – No. 2. – P. 135–145. (In Russ.)] https://doi.org/10.26583/npe.2020.2.12

8. Технологические и организационные аспекты обращения с радиоактивными отходами// IAEA-TCS-27, Вена, 2005. [Tekhnologicheskie i organizatsionnye aspekty obrashcheniya s radioaktivnymi otkhodami// IAEA-TCS-27, Vena, 2005. (In Russ.)]

9. Metodicheskie rekomendatsii «Issledovaniya protsessov stareniya kriuma». Filial IAE RGP NYaTs RK, g. Kurchatov. – 2024. – 19 p. (In Russ.)]

10. Rogovin, M. Three Mile Island. A report to the commissioners and to the public. Nuclear regulatory commission special inquiry group / Mitchell Rogovin. – University of Michigan Library. – 1980. – 488 p.

11. Akers, D.W. TMI-2 Examination Results from the OECD/CSNI program. / D.W. Akers, G. Bart, P. Botoomley, A. Brown, D.S. Cox, P. Hoffman, S.M. Jensen, H. Kleykamp, A.J. Manley, L.A. Neimark, M. Trotabas. – Idaho National Engineering Laboratory, Inc. – 1992. – 494 p.

12. Reactor core materials interaction at very high temperatures / P. Hofmann, S.J. Hagen, G. Schanz, A. Skokan // Nuclear Technology. – 1989. – Vol. 87, No. 1. – P. 146– 186.

13. Akers, D.W. Lower vessel Debris Examination result. – 1989. – 18 p.

14. TMI-2 core materials examination at CEA // International Atomic Energy Agency (IAEA) URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/040/21040489.pdf?r=1 (дата обращения: 20.07.2024).

15. Bottomley, D.W. Final report of the metallurgical examination of samples extracted from the damaged TMI-2 reactor core / D.W. Bottomley, M. Coqerelle. – Joint Research Centre. – 1990. – 16 p.

16. In-Vessel Retention of Molten Corium: Lessons Learned and Outstanding Issues / J.L. Rempe, K.Y. Suh, F.B. Cheung, S.B. Kim // Nuclear Technology. – 2017 – Vol. 161. – No. 3. – P. 210–267.

17. Benchmark study of the accident at the Fukushima Daiichi NPS: Best-estimate case comparison / M. Pellegrini, K. Dolganov, L. E. Herranz [et al.] // Nuclear Technology. – 2016. – Vol. 196. – No. 2. – P. 198–210. – https://doi.org/10.13182/NT16-63

18. Nishihara, K. Estimation of fuel compositions in Fukushima Daiichi Nuclear Power Plant JAEA-Data/Code 2012018 / K. Nishihara, H. Iwamoto, K. Suyama. – Ibaraki: Japan Atomic Energy Agency, 2012. – 190 p.

19. Development of Molten Core Relocation Analysis Module MCRA in the Severe Accident Analysis Code SAMPSON / H. Ujita, N. Satoh, M. Naitoh, M. Hidaka, N. Shirakawa, M. Yamagishi // Journal of Nuclear Science and Technology. – 2000. – Vol. 37. – No. 3. – P. 225–236 p.

20. TEPCO Report. Establishing permit application of Fukushima Daiichi Nuclear Power Station; unit 2. – Tokyo: TEPCO, 2003. – 509 p.

21. NEA OECD, Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Plant Summary Report. NEA/CSNI/R(2015)18. – NEA OECD, 2015. – 53 p.

22. P. V. Slastikhina, A. S. Aloy, V. I. Almjashev, V. B. Khabensky, N. F. Karpovich, et al. (2022) Study of the Main Properties and Leach Behavior of Simulated MCCI Products. Enviro Sci Poll Res and Mang: ESPRM-120.

23. V.G. Rumynin, K.B. Rozov, A.M. Nikulenkov, L.N. Sindalovskiy, A.S. Aloy, N.F. Karpovich, P.V. Slastikhina, Analytical models for predicting the behavior of the Fukushima fuel debris during laboratory tests and longterm storage // Journal of Nuclear Materials. – 2022. – Vol. 568. – P. 153895. ISSN 0022-3115, https://doi.org/10.1016/j.jnucmat.2022.153895

24. ASTM C 1220 - 98 “Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste” 10.07.1998. American sosiety for testing and materials. Reprinted from the Annual Book of ASTM Standarts. – 1998.


Supplementary files

Review

For citations:


Baklanova Yu.Yu., O. S. Bukina O.O., Baklanov V.V. METHODOLOGY FOR THE STUDY OF CORIUM AGING PROCESSES. NNC RK Bulletin. 2025;(1):104-112. (In Russ.) https://doi.org/10.52676/1729-7885-2025-1-104-112

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)