EFFECT OF Rh DOPING ON THE ACTIVITY OF THE OXYGEN RELEASE REACTION ON BaTiO3(001) SURFACES
https://doi.org/10.52676/1729-7885-2025-1-140-147
Abstract
Photoinduced splitting of water using photocatalysts in the form of nanoparticles is a promising and simple way to produce environmentally friendly hydrogen. In this paper, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide obtained from precursors widely distributed on earth, to develop effective electrocatalysts for water oxidation using first-principles calculations.
It has been shown that the BaTiO3(001) surface terminated with TiO2 is more promising in terms of its use as a catalyst. After replacing Ti with Rh, the dopant ion can take over part of the electron density from neighboring oxygen ions. As a result, during the oxidation reaction of water, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of the reaction intermediates on the surface of the catalyst, reducing the excess potential.
About the Authors
A. U. AbuovaAstana
U. Zh. Tolegen
Kazakhstan
Astana
F. U. Abuova
Astana
T. M. Inerbaev
Astana
S. A. Nurkenov
Astana
Zh. Ye. Zakiyeva
Astana
G. A. Kaptagay
Almaty
References
1. Fujishima, A., & Honda, K. Electrochemical photolysis of water at a semiconductor electrode // Nature. – 1972. – Vol. 238(5358). – P. 37–38.
2. Chen, X., & Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications // Chemical Reviews. – 2007. – Vol. 107(7). – P. 2891– 2959.
3. Grätzel, M. Photoelectrochemical cells // Nature. – 2001. – Vol. 414(6861). – P. 338–344.
4. Kudo, A., & Miseki, Y. Heterogeneous photocatalyst materials for water splitting // Chemical Society Reviews. – 2009. – Vol. 38(1). – P. 253–278.
5. Singh, D. P., & Zhao, H. Ferroelectric photocatalysis: The influence of polarization on surface chemical reactions // Nano Energy. – 2018. – Vol. 53. – P. 550–561.
6. Chen, D., Cheng, Y. B., & Caruso, R. A. Surface modification of BaTiO₃ nanoparticles and their application in dye-sensitized solar cells // Advanced Functional Materials. – 2010. – Vol. 20(2). – P. 339–345.
7. Lin, X., & Wang, X. BaTiO₃ nanostructures: Controlled synthesis and applications in photocatalysis // Materials Chemistry and Physics. – 2017. – Vol. 198. – P. 168–176.
8. Zhang, Y., & Tang, Z. Advances in BaTiO₃-based photocatalysts for solar-driven water splitting // Journal of Materials Science. – 2019. – Vol. 54(12). – P. 9408–9424.
9. Liu, H., & Zhang, W. (2021). Interface engineering of BaTiO₃ nanoparticles for enhanced photocatalytic performance // Applied Catalysis B: Environmental. – 2021. – Vol. 298, 120580.
10. Kim, T. H., & Park, J. Enhanced charge separation in BaTiO₃ nanostructures through surface modification: A route to high-efficiency photocatalysis // Nano Energy. – 2020. – Vol. 77. – P. 105266.
11. Y.M. Rangel-Hernandez, J. C. Rendón Angeles, Z. Matamoros-Veloza, Kazumichi Yanagisawa. One-step synthesis of fine SrTiO3 particles using SrSO4 ore under alkaline hydrothermal conditions // Chemical Engineering Journal. – 2009. – Vol. 155(s 1–2). – P. 483–492. https://doi.org/10.1016/j.cej.2009.07.024
12. Vittorio Berbenni, Amedeo Marini, Giovanna Bruni. Effect of Mechanical Activation on the Preparation of SrTiO3 and Sr2TiO4 Ceramics from the Solid State Systems SrCO3–TiO2 // Journal of Alloys and Compounds. – 2001. – Vol. 329(s 1–2). – P. 230–238. https://doi.org/10.1016/S0925-8388(01)01574-2
13. Xiaohua Liu. Haixin Bai. Liquid–solid reaction synthesis of SrTiO3 submicron-sized particles // Materials Chemistry and Physics. – 2011. – Vol. 127(s 1–2). – P. 21–23. https://doi.org/10.1016/j.matchemphys.2011.01.056
14. Shuang Zhi Liu. Tian Xi Wang. Li Yun Yang. Low temperature preparation of nanocrystalline SrTiO3 and BaTiO3 from alkaline earth nitrates and TiO2 nanocrystals // Powder Technology. – 2011. – Vol. 212(2). – P. 378–381. https://doi.org/10.1016/j.powtec.2011.06.010
15. Tao Xian. Hwami Yang. J.-F. Dai. W.-J. Feng. Photocatalytic properties of SrTiO3 nanoparticles prepared by a polyacrylamide gel route // Materials Letters. – 2011. – Vol. 65(21). – P. 3254–3257. https://doi.org/10.1016/j.matlet.2011.07.019
16. Qi-An Zhu. Jun-Gu Xu. S. Xiang. Zhi-Gang Tan. Preparation of SrTiO 3 nanoparticles by the combination of solid phase grinding and low temperature calcining. March 2011. Materials Letters 65(5):873-875. https://doi.org/10.1016/j.matlet.2011.07.019
17. Thanawat Klaytae, Phiram Panthong. Preparation of nanocrystalline SrTiO3 powder by sol–gel combustion method // Ceramics International. – 2013. – Vol. 39. – P.405–408. https://doi.org/10.1016/j.ceramint.2012.10.103
18. Kuang Q, Yang S. Template synthesis of single-crystallike porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution // ACS Appl Mater Interfaces. – 2013. – Vol. 5. – P. 3683–3690.
19. Xu X, Lv M, Sun X, et al. Role of surface composition upon the photocatalytic hydrogen production of Cr-doped and La/Cr-codoped SrTiO3 // J Mater Sci. – 2016. – Vol. 51. – P. 6464–6473.
20. Ali S, Granbohm H, Ge Y, et al. Crystal structure and photocatalytic properties of titanate nanotubes prepared by chemical processing and subsequent annealing // J Mater Sci. – 2016. – Vol. 51. – P. 7322–7335.
21. Nageri, M.; Kumar, V. Manganese-doped BaTiO3 nanotube arrays for enhanced visible light photocatalytic applications // Mater. Chem. Phys. – 2018. – Vol. 213. – P. 400–405. https://doi.org/10.1016/j.matchemphys.2018.04.003
22. Demircivi, P.; Simsek, E.B. Visible-light-enhanced photoactivity of perovskite-type W-doped BaTiO3 photocatalyst for photodegradation of tetracycline // J. Alloys Compd. – 2019. – Vol. 774. – P. 795–802. https://doi.org/10.1016/j.jallcom.2018.09.354
23. Artrith, N.; Sailuam, W.; Limpijumnong, S.; Kolpak, A.M. Reduced overpotentials for electrocatalytic water splitting over Fe- and Ni-modified BaTiO3 // Phys. Chem. Chem. Phys. – 2016. – Vol. 18. – P. 29561– 29570. https://doi.org/10.1039/C6CP06031E; https://www.ncbi.nlm.nih.gov/pubmed/27748475
24. Xie, P.; Yang, F.; Li, R.; Ai, C.; Lin, C.; Lin, S. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and firstprinciples analysis // Int. J. Hydrogen Energy. – 2019. – Vol. 44. – P. 11695–11704. https://doi.org/10.1016/j.ijhydene.2019.03.145
25. Tanwar, N.; Upadhyay, S.; Priya, R.; Pundir, S.; Sharma, P.; Pandey, O. Eu-doped BaTiO3 perovskite as an efficient electrocatalyst for oxygen evolution reaction // J. Solid State Chem. – 2023. – Vol. 317. – P. 123674. https://doi.org/10.1016/j.jssc.2022.123674
26. Maeda, K. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light // ACS Appl. Mater. Interfaces. – 2014. – Vol. 6. – P. 2167–2173. https://doi.org/10.1021/am405293e; https://www.ncbi.nlm.nih.gov/pubmed/24410048
27. Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation // J. Phys. Chem. B. – 2004. – Vol. 108. – P. 8992–8995. https://doi.org/10.1021/jp049556p
28. Nishioka, S.; Maeda, K. Hydrothermal synthesis of rhodium-doped barium titanate nanocrystals for enhanced photocatalytic hydrogen evolution under visible light // RSC Adv. – 2015. – Vol. 5. – P. 100123– 100128. https://doi.org/10.1039/C5RA20044J
29. Zakiyeva Zh.Ye., Inerbaev T.M., Abuova A.U., Abuova F.U., Merali N.A., Tolegen U.Zh., Kaptagay G.A. Ab-Initio calculations of the rhodium-doped (001) surface of the rhombohedral phase BaTiO3 // NNC RK Bulletin. – 2024. – Vol. 2. – P.104–109. (In Russ.) https://doi.org/10.52676/1729-7885-2024-2-104-109]
30. Inerbaev T.M., Zakiyeva Zh.Ye., F.U., Abuova A.U., Nurkenov S.A., Kaptagay G.A. DFT studies of BaTiO3 // Вестник Карагандинского университета. – 2023. P. 72–78].
31. Zakiyeva Z.Ye., Inerbaev T.M., Abuova A.U., Abuova F.U., Nurkenov S.A., Kaptagay G.A., Kabdrakhimova G.D. Effect of Rh-doping on the optical absorption of the (001) BaTiO3 surface // NNC RK Bulletin. – 2024. – Vol. 2. – P. 185–191. (In Russ.) https://doi.org/10.52676/1729-78852024-2-185-191]
32. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method // Physical Review B. ‒ 1999. ‒ Vol. 59. – No. 3. ‒ P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
33. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Physical Review B. ‒ 1996. ‒ Vol. 54. – No. 16. ‒ P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
34. Blöchl P. E. Projector augmented-wave method // Physical Review B. ‒ 1994. ‒ Vol. 50. – No. 24. ‒ P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
35. Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. ‒ 1996. ‒ Vol. 77. – No. 18. ‒ P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
36. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T.A.; Hennig, R.G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways // J. Chem. Phys. – 2014. – Vol. 140. – P. 084106. https://doi.org./10.1063/1.4865107
37. Bader, R.F.W. Atoms in Molecules. A Quantum Theory. – Oxford University Press, Oxford, UK. – 1990.
38. Mom, R.V.; Cheng, J.; Koper, M.T.M.; Sprik, M. Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations // J. Phys. Chem. C. – 2014. – Vol. 118. – P. 4095–4102.
39. Haynes, W.M. CRCHandbook of Chemistry and Physics, 93rd ed. – CRC Press: Boca Raton, FL, USA. – 2012.
40. Man, I.C., et al., Universality in oxygen evolution electrocatalysis on oxide surfaces // ChemCatChem. – 2011. – Vol. 3(7). – P. 1159–1165.
41. García-Mota, M., et al., Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides // The Journal of Physical Chemistry C. – 2012. –Vol. 116(39). – P. 21077–21082.
42. Shi, K.; Zhang, B.; Liu, K.; Zhang, J.; Ma, G. RhodiumDoped Barium Titanate Perovskite as a Stable p-Type Photocathode in Solar Water Splitting // ACS Appl. Mater. Interfaces. – 2023. – Vol. 15. – P. 47754–47763. https://doi.org/10.1021/acsami.3c09635; https://www.ncbi.nlm.nih.gov/pubmed/37769117
43. Ng, J.W.D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T.F. Gold-supported cerium-doped NiOx catalysts for water oxidation // Nat. Energy. – 2016. – Vol. 1. – P. 16053. https://doi.org/10.1038/nenergy.2016.53
Review
For citations:
Abuova A.U., Tolegen U.Zh., Abuova F.U., Inerbaev T.M., Nurkenov S.A., Zakiyeva Zh.Ye., Kaptagay G.A. EFFECT OF Rh DOPING ON THE ACTIVITY OF THE OXYGEN RELEASE REACTION ON BaTiO3(001) SURFACES. NNC RK Bulletin. 2025;(1):140-147. (In Russ.) https://doi.org/10.52676/1729-7885-2025-1-140-147