ASSESSMENT OF THE IMPACT OF CHEMICAL POLLUTION ON CO2 EMISSIONS FROM LIGHT AND DARK CHESTNUT SOILS IN A LONG-TERM LABORATORY EXPERIMENT
https://doi.org/10.52676/1729-7885-2025-2-28-36
Abstract
In a long-term laboratory experiment, an assessment was made of the direction of the influence of chemical pollution on CO2 emissions from light and dark chestnut soils. Chemical contamination of soil samples was carried out with solutions of salts of potassium nitrate (KNO3) and copper (II) sulfate crystallohydrate (CuSO4×5H2O) at doses of 1 and 5 MPC. CO2 emissions were measured using a closed dynamic chamber method. It was found that artificial contamination with potassium nitrate and copper (II) sulfate increased the CO2 flux from the surface of the samples of LC and DC soils in the range from 6 to 12%. depending on the contamination dose, exposure time, and soil type. It was found that the light chestnut soil is more sensitive to nitrate contamination, and dark chestnut soil is more sensitive to copper contamination. In general, the study of CO2 emissions by regional soil types under conditions of chemical pollution requires a more detailed study to predict soil respiration in territories subject to anthropogenic pollution.
About the Authors
Ye. N. PolivkinaKazakhstan
Kurchatov
E. V. Kornilaev
Kazakhstan
Kurchatov
Ye. S. Sussoeva
Kazakhstan
Kurchatov
A. T. Mendubaev
Kazakhstan
Kurchatov
Ye. V. Mustafina
Kazakhstan
Kurchatov
A. O. Aidarkhanov
Kazakhstan
Kurchatov
References
1. Budyko, M. I. Anthropogenic Climatic Change / M. I. Budyko, Y. A. Izrael (eds.). – Tucson: University of Arizona Press, 1991.
2. Houghton, J. T. Climate Change: the IPCC Scientific Assessment / J. T. Houghton, G. J. Jenkins, J. J. Ephraums (eds.). – Cambridge: Cambridge University Press, 1990.
3. IPCC. Climate Change: Synthesis Report / R. T. Watson, Core Writing Team (eds.). – Cambridge: Cambridge University Press, 2001. – 398 p.
4. IPCC. Climate Change 2007: Mitigation. In: Metz, B., et al. (Eds.) / Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. – Cambridge: Cambridge University Press, 2007. ISBN 978-0-521-88011-4 (pb: 978-0-521 70598-1)
5. Denman, K. L. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis / K. L. Denman, et al. (eds. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Avery K. B., Tignor M., Miller H. L.). – Cambridge: Cambridge University Press, 2007. – P. 499–587.
6. Stocker, T. F. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (eds.). – Cambridge: Cambridge University Press, 2013. – P. 867–869.
7. Piao, S. Net carbon dioxide losses of northern ecosystems in response to autumn warming / S. Piao et al. // Nature. – 2008. – V. 451. – P. 49–53.
8. Sukhoveeva O. E., Karelina D. V., Zolotukhina A. N., Pochivalov A.V. Soil respiration in agricultural and natural ecosystems of the European territory of Russia // Soil Science. – 2023. – No. 9. – P. 1077–1088. https://doi.org/10.31857/S0032180X23600488
9. Anokye J., Logah V., Opoku A. Soil carbon stock and emission: estimates from three land-use systems in Ghana // Ecological Processes. – 2021. – V. 10. – P. 11. https://doi.org/10.1186/s13717-020-00279-w
10. Apostolakis A., Schöning I., Michalzik B., Klaus V.H., Boeddinghaus R.S., Kandeler E., Marhan S., Bolliger R., Fischer M., Prati D., Hänsel F., Nauss T., Hölzel N., Kleinebecker T., Schrumpf M. Drivers of soil respiration across a management intensity gradient in temperate grasslands under drought // Nutrient Cycling in Agroecosystems. – 2022. – V. 124. – P. 101–116. https://doi.org/10.1007/s10705-022-10224-2
11. Bond–Lamberty B., Thomson A. Temperature associated increases in the global soil respiration record // Nature. – 2010. – V. 464. – P. 579–582. https://doi.org/10.1038/nature08930
12. Luo Y., Zhou X. Soil respiration and the environment. – Burlington: Academic Press, 2006. – 316 p.
13. Kang X., Hao Y., Cui X., Chen H., Li C., Rui Y., Tian J., Kardol P., Zhong L., Wang J., Wang Y. Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling // Journal of Soils and Sediments. – 2013. – V. 13. – P. 1012–1023. https://doi.org/10.1007/s11368-013-0675-5
14. Gerosa G., Finco A., Boschetti F., Brenna S., Marzuoli R. Measurements of soil carbon dioxide emissions from two maize agroecosystems at harvest under different tillage conditions // The Scientific World Journal. – 2014. – V. 2014. – P. 141345. https://doi.org/10.1155/2014/141345
15. Cotrufo M.F., De Santo A.V., Alfani A., Bartoli G., De Cristofaro A. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods // Environmental Pollution. – 1995. – V. 89. – No. 1. – P. 81–87.
16. Kaye J.P., McCulley R.L., Burke I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems // Global Change Biology. – 2005. – V. 11. – No. 4. – P. 575–587.
17. Ohya H., Fujiwara S., Komai Y., Yamaguchi M. Microbi al biomass and activity in urban soils contaminated with Zn and Pb // Biology and Fertility of Soils. – 1988. – V. 6. – No. 1. – P. 9–13.
18. Papa S., Bartoli G., Pellegrino A., Fioretto A. Microbial activities and trace element contents in an urban soil // Environmental Monitoring and Assessment. – 2010. – V. 165. – No. 1–4. – P. 193–203.
19. Yuangen Y., Paterson E., Campbell C.D. Urban soil microbial features and their environmental significance as exemplified by Aberdeen City, UK // Chinese Journal of Geochemistry. – 2001. – V. 20. – No. 1. – P. 34–44.
20. Kadulin M.S., Koptsik M.N. CO2 emission by soils in the zone of influence of the Severonickel mining and Metal lurgical combine in the Kola Subarctic // Soil Science. – 2013. – No. 11. – pp. 1387–1396. https://doi.org/10.7868/S0032180X13110063
21. Smorkalov I.A., Vorobeichik E.L. Soil respiration of fo rest ecosystems in environmental pollution gradients from copper smelters // Ecology. - 2011. – V. 6. – P. 429–435.
22. Kozlov M.V., Zvereva E.L., Zverev V.E. Impacts of point polluters on terrestrial biota: Comparative analysis of 18 contaminated areas. – Dordrecht: Springer, 2009. – 466 p.
23. Ramsey P.W., Rillig M.C., Feris K.P., Moore J.N., Gannon J.E. Mine waste contamination limits soil respira tion rates: A case study using quantile regression // Soil Biology and Biochemistry. – 2005. – V. 37. – No. 6. – P. 1177–1183.
24. Ramsey P.W., Rillig M.C., Feris K.P., Gordon N.S., Moore J.N., Holben W.E., Gannon J.E. Relationship between communities and processes: new insights from a field study of a contaminated ecosystem // Ecology Letters. – 2005. – V. 8. – No. 11. – P. 1201–1210.
25. https://www.fao.org/soils-portal/data-hub/soil classification/world-reference-base/en/ (date of access: 09/12/2024).
26. Sokolov O. A. Nitrates in the environment/ Sokolov O. A., Semenov V.M., Agaev V.A. – Pushchino.: ONTI National Library of the USSR Academy of Sciences, 1988. – 303 p.
27. Kloke A. Orientirung sdaten fur toleriebare Gesumtgehalte einiger Elemente in Kulterboden // Mitteilungen VDLVFA. – 1980. – H. 2. – S. 32–38.
28. Fedorov Yu.A., Sukhorukov V.V., Trubnik R.G. Analy tical review: emission and absorption of greenhouse gases by soils. Environmental problems / Anthropogenic transformation of the natural environment. – 2021. – Vol. 7. – No. 1. – pp. 6–34. https://doi.org/10.17072/2410-8553 2021-1-6-34
29. GOST 26213-2021. Soils. Methods for the determination of organic matter. Instead of GOST 26213-91; introduced on 2022-06-03. – Minsk: Eurasian Council for Standardization, Metrology and Certification, 2021. – 7 p.
30. GOST 26423-85. Soils. Methods for determining specific electrical conductivity, pH, and dense residue of aqueous extract. – Introduced 1986-01-01. – Moscow: Publishing House of Standards, 1985. – 7 p.
31. GOST 26428-85. Soils. Methods for the determination of calcium and magnesium in aqueous extract. – Introduced 1986-01-01. – Moscow: Publishing House of Standards, 1985. – 8 p.
32. GOST 26425-85. Soils. Methods for the determination of chloride ion in aqueous extract. – Introduced 1986-01-01. – Moscow: Publishing House of Standards, 1985. – 9 p.
33. GOST 26426-85. Soils. Methods for the determination of sulfate ion in aqueous extract. – Introduced 1986-01-01. – Moscow: Publishing House of Standards, 1985. – 7 p.
34. GOST 26424-85. Soils. A method for the determination of carbonate and bicarbonate ions in an aqueous extract. – Introduced 1986-01-01. – Moscow: Publishing House of Standards, 1985. – 4 p.
35. GOST 12536-2014. Soils. Methods of laboratory determi nation of granulometric (grain) and microaggregate com position. – Instead of GOST 12536-79; introduced on 2016-09-01. – Moscow: Standartinform, 2019. – 18 p.
36. Kobzar A. I. Applied mathematical statistics. For engine ers and researchers. – M.: Fizmatlit, 2006. – P. 484–486. – 816 p.
37. Shindorikova O.V., Ulyanova O.A., Chuprova V.V. The effect of fertilizers on CO2 emissions from agrochernozem in the conditions of the Krasnoyarsk forest-steppe // Bulletin of KrasGAU. – 2015. – No. 10. – P. 174–179.
38. Benjamin Z. Houlton, Edith Bai. Imprint of denitrifying bacteria on the global terrestrial biosphere // Proceedings of the National Academy of Sciences. – 2009. – V. 106 (51). – P. 21713–21716. https://doi.org/10.1073/pnas.0912111106
39. He Z.L., Yang X.E., Stoffella P.J. Trace elements in agro ecosystems and impacts on the environment // Journal of Trace Elements in Medicine and Biology. – 2005. – V. 109. – P. 125–140.
40. Wu X., Cobbina S.J., Mao G., Xu H., Zhang Z., Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment // Environ mental Science and Pollution Research. – 2016. – V. 23. – P. 8244–8259.
41. Vlcek, V., Pohanka, M. Adsorption of copper in soil and its dependence on physical and chemical properties // Acta Univ. Agric. Silvic. Mendelianae Brun. – 2018. – V. 66. – P. 219–224.
42. Wuana, R.A., Okieimen, F.E. Heavy metals in contamina ted soils: A review of sources, chemistry, risks and best available strategies for remediation // ISRN Ecology. – 2011. – V. 265. – P. 1–20.
43. Minkina, T., Motuzova, G., Mandzhieva, S., Nazarenko, O. Ecological resistance of the soil–plant system to conta mination by heavy metals // Journal of Geochemical Exploration. – 2012. – V. 123. – P. 33–40. https://doi.org/10.1016/j.gexplo.2012.08.021
Review
For citations:
Polivkina Ye.N., Kornilaev E.V., Sussoeva Ye.S., Mendubaev A.T., Mustafina Ye.V., Aidarkhanov A.O. ASSESSMENT OF THE IMPACT OF CHEMICAL POLLUTION ON CO2 EMISSIONS FROM LIGHT AND DARK CHESTNUT SOILS IN A LONG-TERM LABORATORY EXPERIMENT. NNC RK Bulletin. 2025;(2):28-36. (In Russ.) https://doi.org/10.52676/1729-7885-2025-2-28-36