Preview

NNC RK Bulletin

Advanced search

APPLICATION OF LIQUID SCINTILLATION METHOD FOR RADON DETERMINATION IN WATER

https://doi.org/10.52676/1729-7885-2025-2-96-102

Abstract

The paper presents the results of using the method of liquid scintillation counting (LSC) for measurement of radon concentration in water. The optimal settings of separation of alpha- and beta-radiation, as well as the efficiency of radon registration for different types of scintillators have been determined experimentally. The method was tested on water objects located on the territory of Semipalatinsk test site (STS). The comparison with gamma-spectrometric analysis was carried out for validation of the LSC method, which showed their good agreement. The obtained results allow recommending the LSC method for radioecological monitoring of water objects.

About the Authors

K. T. Zhamaldinova
Branch “Institute of Radiation Safety and Ecology” RSE NNC RK
Kazakhstan

Kurchatov



F. F. Zhamaldinov
Branch “Institute of Radiation Safety and Ecology” RSE NNC RK
Kazakhstan

Kurchatov



M. T. Dyusembaeva
Branch “Institute of Radiation Safety and Ecology” RSE NNC RK
Kazakhstan

Kurchatov



A. S. Mamyrbaeva
Branch “Institute of Radiation Safety and Ecology” RSE NNC RK
Kazakhstan

Kurchatov



A. J. Tashekova
Branch “Institute of Radiation Safety and Ecology” RSE NNC RK
Kazakhstan

Kurchatov



K. A. Pontak
Branch “Institute of Radiation Safety and Ecology” RSE NNC RK
Kazakhstan

Kurchatov



References

1. Jobbágy V., Kávási N., Somlai J., Dombovári P., Gyöngy- ösi C., Kovács T. Gross alpha and beta activity concentrations in spring waters in Balaton Upland, Hungary // Radiation Measurements. – 2011. – V. 46. – P. 159–163.

2. Schwartz M.C. Significant groundwater input to a coastal plain estuary: assessment from excess radon // Estuarine, Coastal and Shelf Science. – 2003. – V. 56. – P. 31–42.

3. Corbett D.R., Burnett W.C., Cable P.H., Clark S.B. Radon tracing of groundwater input into Par Pond, Savannah River Site // Journal of Hydrology. – 1997. – V. 203. – P. 209–227.

4. WHO. Handbook on indoor radon: a public health perspective. Geneva: WHO Press, 2009.

5. Kuz'min M. I., Kuz'mina O. V. Radon v podzemnykh vodakh Yuzhnogo Pribaykal'ya: rezul'taty monitoringa i prognoz kontsentratsiy // Geologiya i razvedka. – 2010. – No. – P. 45–53.

6. Shitova T. A., Shitov A. V. Radon v obvodnennykh razlomnykh zonakh Baykal'skogo rifta // Geofizicheskie issledovaniya. – 2015. – V. 16, No. 3. – P. 58–67.

7. ISO. Water quality – Radon-222 – Part 1: General principles (ISO 13164-1:2013). International Organization for Standardization, 2013.

8. ISO. Water quality – Radon-222 – Part 2: Test method using gamma-ray spectrometry (ISO 13164-2:2013). International Organization for Standardization, 2013.

9. ISO. Water quality – Radon-222 – Part 3: Test method using emanometry (ISO 13164-3:2013). International Organization for Standardization, 2013.

10. ISO. Water quality – Radon-222 – Part 4: Test method using two-phase liquid scintillation counting (ISO 13164- 4:2015). International Organization for Standardization, 2015.

11. Cantaloub M. G. Aqueous-organic partition coefficients for Rn-222 and their application to radon analysis by liquid scintillation methods. 2000.

12. Sekine T., Yamasaki A. Studies of the Liquid-Liquid Partition Systems. I. The Distribution of Radon (0) between Various Organic Solvents and Aqueous Solutions // Bulletin of the Chemical Society of Japan. – 1965. – V. 38, No. 7. – P. 1110–1115.

13. Manual I. Wallac 1220 Quantulus ultra low level liquid scintillation spectrometer. PerkinElmer, 2002.

14. Lucchetti C., De Simone G., Galli G., Tuccimei P. Evaluating radon loss from water during storage in standard PET, bio-based PET, and PLA bottles // Radiation Measurements. – 2016. – V. 84. – P. 1–8.

15. Trull-Hernandis C., Noverques A., Juste B., Sancho M., Verdú G. Radon leakage in LSC vials: Material-dependent analysis for utilization and reutilization // Radiation Physics and Chemistry. – 2024. – V. 222. – P. 111831.

16. Mezhdunarodnoe agentstvo po atomnoy energii (MAGATE). ALMERA Proficiency Tests. URL: https://analytical-reference-materials.iaea.org/almera-proficiency-tests

17. Mezhdunarodnoe agentstvo po atomnoy energii (MAGATE). Sertifitsirovannye etalonnye materialy. URL: https://analytical-reference-materials.iaea.org/certified-reference-materials

18. ASTM International. ASTM D5072-09(2016): Standard practice for radon measurement in water // ASTM International. – 2016. URL: https://www.astm.org/d5072-09.html

19. Dyusembaeva M. T., Mukhamediyarov N. Zh., Esil'kanov G. M., Tashekova A. Zh., Aydarkhanov A. O. Ekologogeokhimicheskie osobennosti nekotorykh vodnykh ob"ektov Semipalatinskogo ispytatel'nogo poligona. – Almaty: Intellekt, 2023. – 268 p. – ISBN 978-601-08-3227-5.

20. Ministerstvo zdravookhraneniya Respubliki Kazakhstan. Prikaz Ministra zdravookhraneniya Respubliki Kazakhstan ot 02 avgusta 2022 goda No. ҚR DSM-71 “Ob utverzhdenii gigienicheskikh normativov k obespecheniyu radiatsionnoy bezopasnosti”. URL: https://adilet.zan.kz


Review

For citations:


Zhamaldinova K.T., Zhamaldinov F.F., Dyusembaeva M.T., Mamyrbaeva A.S., Tashekova A.J., Pontak K.A. APPLICATION OF LIQUID SCINTILLATION METHOD FOR RADON DETERMINATION IN WATER. NNC RK Bulletin. 2025;(2):96-102. (In Russ.) https://doi.org/10.52676/1729-7885-2025-2-96-102

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)