ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА И ФАЗОВЫЙ СОСТАВ ПОКРЫТИЙ Cr3C2–NiCr, ПОЛУЧЕННЫХ МЕТОДОМ HVOF: ОБЗОР
https://doi.org/10.52676/10.52676/1729-7885-2025-3-14-24
Аннотация
В данной обзорной работе проводится детальный анализ влияния параметров высокоскоростного газопламенного напыления (HVOF) на формирование микроструктуры и эксплуатационные характеристики покрытий на основе карбида хрома в связке с никель-хромом (Cr3C2–NiCr). Исследуются фазовые составы, включая плотность, пористость, адгезионную прочность и микротвердость, определяющие механическое поведение покрытия при интенсивных внешних нагрузках. Особое внимание уделяется механизму износостойкости, прочности сцепления с подложкой и сопротивлению усталостному разрушению, что критично для эксплуатации в условиях экстремальных механических воздействий. Рассматривается влияние различных режимов HVOF-напыления на фазовые особенности покрытий, а также их корреляция с эксплуатационными характеристиками. На основе проведенного анализа формулируются перспективные направления применения Cr3C2–NiCr покрытий в авиационной, энергетической и машиностроительной отраслях, требующих сочетания высокой износостойкости и термической стойкости.
Ключевые слова
Об авторах
Ш. Р. КурбанбековКазахстан
Курбанбеков Шерзод Рустамбекоич - Phd, ассоциированный профессор кафедры физики, МКТУ им. Х.А. Ясави; директор НИИ "Естественных наук, нанотехнологий и новых материалов".
Туркестан
Д. Э. Балтабаева
Казахстан
Балтабаева Дилноза Эрмахаммадовна - научный сотрудник НИИ "Естественных наук, нанотехнологий и новых материалов".
Туркестан
Б. Ж. Сейтов
Казахстан
Сейтов Бекболат Ж. - Phd, старший преподаватель кафедры физики.
Туркестан
Ю. О. Амангельдиева
Казахстан
Амангельдиева Юлдуз О. – магистрант.
Туркестан
А. Н. Әбдімүтәліп
Казахстан
Әбдімүтәліп Арай Н. – магистрант.
Туркестан
Список литературы
1. Chong K., Zou Y., Wu D., Tang Y., Zhang Y. Pulsed laser re-melting supersonic plasma sprayed Cr3C2–NiCr coatings for regulating microstructure, hardness, and corrosion properties // Surface and Coatings Technology. – 2021. – Vol. 418. – P. 127258. https://doi.org/10.1016/j.surfcoat.2021.127258.
2. Ping X.L., Fu H.G., Sun S.T., Lin J., Guo X.Y., Lei Y.P. Microstructure and performance of Nb-bearing Ni60A–Cr3C2 coatings manufactured by laser cladding // Surface Engineering. – 2020. – Vol. 36, No. 12. – P. 1294–1306. https://doi.org/10.1080/02670844.2019.1631510.
3. Sadeghimeresht E., Markocsan N., Nylen P. Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings // Surface and Coatings Technology. – 2017. – Т. 318. – P. 365–373. https://doi.org/10.1016/j.surfcoat.2016.11.088.
4. Thakare, J. G., Pandey, C., Mulik, R. S., & Mahapatra, M. M. Microstructure and mechanical properties of D-Gun sprayed Cr3C2–NiCr coating on P91 steel subjected to long term thermal exposure at 650 °C // Materials Research Express,. – 2019. – Vol. 6(11). – 1165h1. https://doi.org/10.1088/2053-1591/ab5265
5. Du, H., Sun, C., Hua, W., & Zhang, G. Fabrication and evaluation of D-gun sprayed WC–Co coating with self-lubricating property // Tribology Letters. – 2006. – Vol. 23. – P. 261–266. https://doi.org/10.1007/s11249-006-9119-3
6. Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. Bonding mechanisms in cold gas spraying // Acta Materialia. – 2003. – Vol. 51(15). – P. 4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X
7. Геращенков Д.А. Применение технологии холодного газодинамического напыления как аддитивного способа для получения материалов на основе алюминида никеля и алюминида титана // Вопросы материаловедения. – 2021. – № 3(107). – С. 118–127. https://doi.org/10.22349/1994-6716-2021-107-3-118-127
8. Li, S., Duan, Y., Gong, S., & Li, Q. Microstructure and deposition mechanism of laser-hybrid plasma spraying NiCr–Cr3C2 coating // Rare Metal Materials and Engineering. – 2013. – Vol. 42. – P. 106–109.
9. Espallargas, N. Future Development of Thermal Spray Coatings: Types, Designs, and Applications. Elsevier. – 2015.
10. He, J., & Lavernia, E. J. (2001). Precipitation phenomenon in nanostructured Cr3C2–NiCr coatings // Materials Science and Engineering: A. –2001. – Vol. 301(1). – P. 69–79.
11. Guilemany, J. M., Miguel, J. M., Vizcaíno, S., Lorenzana, C., Delgado, J., & Sánchez, J. Role of heat treatments in the improvement of the sliding wear properties of Cr3C2– NiCr coatings // Surface and Coatings Technology. – 2002. – Vol. 157(2). – P. 207–213. https://doi.org/10.1016/S0257-8972(02)00148-2
12. Chakradhar, R. P. S., Prasad, G., Venkateswarlu, K., & Rao, D. S. An investigation on the wear and corrosion behavior of HVOF-sprayed WC–12Co–Al2O3 cermet coating // Journal of Materials Engineering and Performance. – 2018. – Vol. 27. – P. 1241–1248. https://doi.org/10.1007/s11665-018-3240-y
13. Scendo, M. Effect of the composition and the thermal treatment on corrosion resistance of WC–Co–Al2O3 ceramic coatings // International Journal of Electrochemical Science. – 2018. – Vol. 13(9). – P. 8745–8765. https://doi.org/10.20964/2018.09.22
14. Mouche, P. A., Ang, C., Koyanagi, T., Doyle, P., & Katoh, Y. Characterization of PVD Cr, CrN, and TiN coatings on SiC // Journal of Nuclear Materials. – 2019. – Vol. 526. – P. 151781. https://doi.org/10.1016/j.jnucmat.2019.151781
15. Gao, J., Yu, J., Lu, S., & Liang, J. Synthesis of functional ceramic nanocrystals (SiC, TiC, TiN) by arc-discharge plasma process // 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO) (pp.). IEEE. https://doi.org/10.1109/NANO.2017.8117328
16. Nguyen, T. V., Nguyen, T. A., Ha, P. T., & Pham, L. T. Sealing treatment of plasma-sprayed Cr3C2–NiCr/Al2O3–TiO2 coating by aluminum phosphate sealant containing Al2O3 nanoparticles // Journal of Thermal Spray Technology. – 2021. https://doi.org/10.1007/s11666-021-01263-2
17. Reardon, J. D., Mignogna, R., & Longo, F. N. (1981). Plasma- and vacuum-plasma-sprayed Cr3C2 composite coatings // Thin Solid Films. – 1981. – Vol. 83(3). – P. 345–351. https://doi.org/10.1016/0040-6090(81)90637-4
18. Houck, D. L., & Cheney, R. F. (1984). Comparison of properties of Cr3C2–NiCr coatings thermally sprayed from pre-alloyed and mechanically mixed powders // Thin Solid Films. – 1984. – Vol. 118(4). – P. 507–513. https://doi.org/10.1016/0040-6090(84)90279-7
19. Ulianitsky, VY; Batraev, IS; Rybin, D. K.; et al. Detonation Spraying of Cr3C2–NiCr Coatings and Their Properties // J. Therm. Spray Technol. – 2022. – Vol. 31. – P. 598–608. https://doi.org/10.1007/s11666-021-01301-z
20. Lih, W. C.; Yang, S.H.; Su, C.Y.; Huang, S.C.; Hsu, I. C.; Leu, MS Effects of Process Parameters on Molten Particle Speed and Surface Temperature and the Properties of HVOF CrC–NiCr Coatings // Surf. Coat. Technol. – 2000, – Vol. 133-134(1). – P. 54–60. https://doi.org/10.1016/S0257-8972(00)00873-2
21. Matikainen, V.; Bolelli, G.; Koivuluoto, H.; Honkanen, M.; Vippola, M.; Lusvarghi, L.; Vuoristo, P. A Study of Cr3C2-Based HVOF-and HVAF-Sprayed Coatings: Microstructure and Carbide Retention // J. Therm. Spray Technol. – 2017. – Vol. 26(6). – P. 1239–1256. https://doi.org/10.1007/s11666-017-0578-x
22. Zheng, J.-C., Hu, X., & Ren, Z. Solid-state reaction studies in Al2O3–TiO2 system by diffusion couple method // ISIJ International. – 2017. – Vol. 57(10). – P. 1762–1766. https://doi.org/10.2355/isijinternational.ISIJINT-2017-042
23. Guo, C., Zhou, J., Chen, J., & Zhao, J. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/ WC-Ni composite coatings // Wear. – 2011. – Vol. 270 (7–8). – P. 492–498. https://doi.org/10.1016/j.wear.2011.01.003
24. Mendoza-Serna, R., Méndez-Vivar, J., Loyo-Arnaud, E., & Martínez-Fuentes, S. S. Sintering of SiO2-Al2O3-TiO2 and SiO2-Al2O3-ZrO2 obtained by the sol-gel process // Key Engineering Materials. – 2004. – Vol. 264–268. – P. 355–358. https://doi.org/10.4028/www.scientific.net/KEM.264-268.355
25. Hornik, J., Krum, S., Tondl, D., & Puchnin, M. Multilayer coatings Ti/TiN, Cr/CrN and W/WN deposited by magnetron sputtering for improvement of adhesion to base materials // Acta Polytechnica. – 2015. – Vol. 55(6). – P. 388–392. https://doi.org/10.14311/AP.2015.55.0388
26. He, B., Zhang, L., Yun, X., Wang, J., Zhou, G., Chen, Z., & Yuan, X. Comparative study of HVOF Cr3C2–NiCr coating with different bonding layer on the interactive behavior of fatigue and corrosion // Coatings. – 2022. – Vol. 12(3). – P. 307. https://doi.org/10.3390/coatings12030307
27. Hebbale, A. M., Kumar, M., Soudagar, M. E. M., Ahamad, T., Kalam, M. A., Mubarak, N. M., & Khalid, M. A comparative study on characteristics of composite (Cr3C2–NiCr) clad developed through diode laser and microwave energy // Scientific Reports. – 2023. – Vol. 13(1). – P. 10778. https://doi.org/10.1038/s41598-023-37991-4
28. Liu, X., Shen, C., Hu, K., Wang, H., Li, Y., & He, J. Improvement in high-velocity air-fuel-sprayed Cr3C2–NiCr/(NiAl, NiCr) composite coatings by annealing heat treatment // Journal of Materials Engineering and Performance. – 2023. – Vol. 32. – P. 199–210. https://doi.org/10.1007/s11665-022-06938-7
29. Zhang Y., Wang J., Li S. High-temperature oxidation of zirconium alloys: Mechanisms and protective strategies // Corrosion Science. – 2019. – Vol. 157. – P. 103185. https://doi.org/10.1016/j.corsci.2019.103185
30. Sidhu T.S., Prakash S., Agrawal R.D. State of the art of HVOF coating investigations – A review // Marine Technology Society Journal. – 2005. – Vol. 39, No. 2. – P. 53–64. https://doi.org/10.4031/002533205787443908
31. Lee S., Choi J., Kim T. Development of metal-ceramic composite coatings for zirconium alloys in nuclear reactors // Surface and Coatings Technology. – 2020. – Vol. 402. – P. 126647. https://doi.org/10.1016/j.surfcoat.2020.126647
32. Kim Y., Park H. Advances in protective coating technology for zirconium alloys used in nuclear applications // Journal of Nuclear Materials. – 2018. – Vol. 508. – P. 7–15. https://doi.org/10.1016/j.jnucmat.2018.05.033
33. Bossis P., Pecheur D., Hanifi K., Thomazet J., Blat M. Comparison of the high burn-up corrosion on M5 and low tin Zircaloy-4 // Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry. – 2006. – Vol. 3. – P. 494–525. https://doi.org/10.1520/JAI12404
34. Kim J.H., Choi B.K., Baek J.H., Jeong Y.H. Effects of oxide and hydrogen on the behavior of Zircaloy-4 cladding during the loss of the coolant accident (LOCA) // Nuclear Engineering and Design. – 2006. – Vol. 236, No. 22. – P. 2386–2393. https://doi.org/10.1016/j.nucengdes.2006.02.012
35. Zieliński A., Sobieszczyk S. Hydrogen enhanced degradation and oxide effects in zirconium alloys for nuclear applications // International Journal of Hydrogen Energy. – 2011. – Vol. 36. – P. 8619–8629. https://doi.org/10.1016/j.ijhydene.2011.04.002
36. Charit I. Accident tolerant nuclear fuels and cladding materials // JOM. – 2018. – Vol. 70. – P. 173–175. https://doi.org/10.1007/s11837-017-2701-3
37. Motta A.T., Capolungo L., Chen L.Q., Cinbiz M.N., Daymond M.R., Koss D.A., Lacroix E., Pastore G., Simon P.-C.A., Tonks M.R., et al. Hydrogen in zirconium alloys: A review // Journal of Nuclear Materials. – 2019. – Vol. 518. – P. 440–460. https://doi.org/10.1016/j.jnucmat.2019.02.042
38. Duan Z., Yang H., Satoh Y., Murakami K., Kano S., Zhao Z., Shen J., Abe H. Current status of materials development of nuclear fuel cladding tubes for light water reactors // Nuclear Engineering and Design. – 2017. – Vol. 316. – P. 131–150. https://doi.org/10.1016/j.nucengdes.2017.02.031
39. Motta A.T., Chen L.Q. Hydrogen embrittlement and high-temperature oxidation of zirconium alloys in nuclear reactors // Progress in Materials Science. – 2015. – Vol. 77. – P. 411–461. https://doi.org/10.1016/j.pmatsci.2015.04.002.
40. eitov, B., Kurbanbekov, S., Baltabayeva, D., Kakimzhanov, D., Katpayeva, K., Temirbekov, A., Bekbayev, S., & Mussakhan, N. Review of Physical and Mechanical Properties, Morphology, and Phase Structure in Cr3C2–NiCr Composite Coatings Sprayed by HVOF Method // Coatings. – 2025. – Vol. 15(4). – P. 479. https://doi.org/10.3390/coatings15040479
41. Fotovvati, B., Namdari, N., & Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review // Journal of Manufacturing and Materials Processing. – 2019. – Vol. 3(1). – P. 28. https://doi.org/10.3390/jmmp3010028
42. Vashishtha, N.; Khatirkar, S. G.; Sapate, RK Tribological behavior of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coatings // Tribol. Int. – 2017. – Vol. 105. – P. 55–68. https://doi.org/10.1016/j.triboint.2016.09.025
43. Lauzuardy, J.; Basuki, E. A.; Martides, E.; Septianissa, S.; Prawara, B.; Junianto, E.; Riyanto, E. Microstructure Characteristics of Cr3C2–NiCr Coatings Deposited with the High-Velocity Oxy-Fuel Thermal-Spray Technique // Mater. Technol. – 2024. – Vol. 58(2). – P. 137–145. https://doi.org/10.17222/mit.2023.869
44. Zhu L., Wang S., Pan H., Yuan C., Chen X. Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology // Journal of Manufacturing Processes. – 2020. – Vol. 49. – P. 344–354. https://doi.org/10.1016/j.jmapro.2019.12.009.
45. Janka L. Thermally sprayed Cr3C2–NiCr coatings: improving the abrasion resistance. – 2018.
46. Chen T., Xu L., Liu X. Hydrogen-induced embrittlement and degradation of zirconium alloys in nuclear reactors: A review // Journal of Nuclear Materials. – 2021. – Vol. 543. – P. 152536. https://doi.org/10.1016/j.jnucmat.2021.152536.
47. Wang, B.Q., Luer, L. High Erosion Temperature of Cr3C2–NiCr Thermal Spray Coatings – The Role of Phase Microstructure // Wear. – 1994. – Vol. 174, No. 1–2. – P. 177–185. https://doi.org/10.1016/0043-1648(94)90100-7.
48. Matthews, S., James, B., Hyland, M. High Erosion Temperature of Cr3C2–NiCr Thermal Spray Coatings – The Role of Phase Microstructure // Surface and Coatings Technology. – 2009. – Vol. 203, No. 9. – P. 1144–1153. https://doi.org/10.1016/j.surfcoat.2008.10.008.
49. Xie, M., Lin, Y., Ke, P., Wang, S., Zhang, S., Zhen, Z., Ge, L. Influence of Process Parameters on High Velocity Oxy-Fuel Sprayed Cr3C2-25%NiCr Coatings // Coatings. – 2017. – Vol. 7, No. 7. – P. 98. https://doi.org/10.3390/coatings7070098.
50. Poirier, D., Legoux, J. G., Lima, R.S. Engineering HVOF-Sprayed Cr3C2–NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties, and High Temperature Wear Performance // Journal of Thermal Spray Technology. – 2013. – Vol. 22. – P. 280–289. https://doi.org/10.1007/s11666-012-9833-3.
51. Sahraoui, T., Fenineche, N.E., Montavon, G., Coddet, C. Structure and Wear Behavior of HVOF Sprayed Cr3C2–NiCr and WC–Co Coatings // Materials & Design. – 2003. – Vol. 24, No. 5. – P. 309–313. https://doi.org/10.1016/S0261-3069(03)00059-1.
52. Bolelli, G., Berger, L.M., Börner, T., Koivuluoto, H., Matikainen, V., Lusvarghi, L., Lyphout, C., Markocsan, N., Nylén, P., Sassatelli, P., Trache, R., Vuoristo, P. Sliding and Abrasive Wear Behavior of HVOF- and HVAF-Sprayed Cr3C2–NiCr Hardmetal Coatings // Wear – 2016. – Vol. 358–359. – P. 32–50. https://doi.org/10.1016/j.wear.2016.03.034.
53. Zhou, W., Zhou, K., Li, Y., Deng, C., Zeng, K. High Temperature Wear Performance of HVOF-Sprayed Cr3C2-WC-NiCoCrMo and Cr3C2–NiCr Hardmetal Coatings // Applied Surface Science. – 2017. – Vol. 416. – P. 33–44. https://doi.org/10.1016/j.apsusc.2017.04.132.
54. Zhou, Z., Duan, D., Li, S., Sun, D., Yong, J., Jiang, Y., He, W., Xu, J. Microstructure and High-Temperature Properties of Cr3C2–NiCr Nanoceramic Coatings Prepared by HVAF // Coatings. – 2023. – Vol. 13, No. 10. – P. 1741. https://doi.org/10.3390/coatings13101741.
55. Selvam Kevin, P., Tiwari, A., Seman, S., Beer Mohamed, S.A., Jayaganthan, R. Erosion-Corrosion Protection Due to Cr3C2–NiCr Cermet Coating on Stainless Steel // Coatings. – 2020. – Vol. 10, No. 11. – P. 1042. https://doi.org/10.3390/coatings10111042.
56. Rakhadilov B., Muktanova N., Seitkhanova A., Kakimzhanov D., Dautbekov M. Investigation of the Influence of the Oxygen Flow Rate on the Mechanical, Structural and Operational Properties of 86WC-10Co-4Cr Coatings, as Determined Using the High-Velocity Oxyfuel Spraying Method // Coatings. – 2024. Vol. 14, No. 10. – P. 1275. https://doi.org/10.3390/coatings14101275
57. Kurbanbekov S., Rakhadilov B., Kakimzhanov D., Seitov B., Katpaeva K., Kurmantayev A., Dautbekov M., Kengesbekov A. Research on the Structural–Phase and Physical–Mechanical Characteristics of the Cr3C2–NiCr Composite Coating Deposited by the HVOF Method on E110 Zirconium Alloy // Coatings. – 2024. – Vol. 14. – P. 1030. https://doi.org/10.3390/coatings14081030
58. Zhang C., Ma H., Bao C. Corrosive Wear Mechanism of Supersonic Atmospheric Plasma Spray Coating of Hydraulic Supports in Industrial Environment // J. Mater. Eng. Perform. – 2025. – Vol. 34. – P. 520–530. https://doi.org/10.1007/s11665-023-09059-x
59. Lin L., Li G.L., Wang H.D., Kang J.J., Xu Z.L., Wang H.J. Structure and wear behavior of NiCr-Cr3C2 coatings sprayed by supersonic plasma spraying and high velocity oxy-fuel technologies // Appl. Surf. Sci. – 2015. – Vol. 356. – P. 383–390. https://doi.org/10.1016/j.apsusc.2015.08.019
60. Alroy R.J., Kamaraj M., Sivakumar G. Influence of processing condition and post-spray heat treatment on the tribological performance of high velocity air-fuel sprayed Cr3C2-25NiCr coatings // Surf. Coat. Technol. – 2023. – Vol. 463. – P. 129498. https://doi.org/10.1016/j.surfcoat.2023.129498
61. Magnani M., Suegama P.H., Espallargas N., Fugivara C.S., Dosta S., Guilemany J.M., Benedetti A.V. Corrosion and Wear Studies of Cr3C2–NiCr -HVOF Coatings Sprayed on AA7050 T7 Under Cooling // J. Therm. Spray Technol. – 2009. – Vol. 18. – P. 353–363. https://doi.org/10.1007/s11666-009-9305-6
62. Du J.-Y., Li F.-Y., Li Y.-L., Wang L.-M., Lu H.-Y., Ran X.-J., Zhang X.-Y. Influences of plasma arc remelting on microstructure and service performance of Cr3C2– NiCr/NiCrAl composite coating // Surf. Coat. Technol. – 2019. – Vol. 369. – P. 16–30. https://doi.org/10.1016/j.surfcoat.2019.04.037
63. Jonda, E., Łatka, L., & Pakieła, W. Microstructure and selected properties of Cr3C2–NiCr coatings obtained by HVOF on magnesium alloy substrates // Materials. – 2020. – Vol. 13(12). – P. 2775. https://doi.org/10.3390/ma13122775
64. Shunmuga Priyan M., Azad A., Araffath S.Y. Influence of HVOF Parameters on the Wear Resistance of Cr3C2–NiCr Coating // J. Mater. Sci. Surf. Eng. – 2016. – Vol. 4. – No. 2. – P. 355–359.
65. Chhabra P., Kaur M. Wear and Friction Characteristics of Atmospheric Plasma Sprayed Cr3C2–NiCr Coatings // Tribol. Mater. Surf. Interfaces. – 2020. – Vol. 14, No. 3. – P. 177–192. https://doi.org/10.1080/17515831.2020.1720383
66. Li W., Tang P., Shang L., He D., Wang L., Zhang G., Jin K. Tribological Behaviors of CrN/Cr3C2–NiCr Duplex Coating at Elevated Temperatures // Surf. Coat. Technol. – 2019. – Vol. 378. – P. 124926. https://doi.org/10.1016/j.surfcoat.2019.124926
67. Rakhadilov B., Muktanova N., Kakimzhanov D., Adilkanova M., Kurbanbekov S., Abdulina S. Influence of Varying the Spraying Distance on the Structural-Phase State and Mechanotribological Properties of 86WC-10Co-4Cr-Based Coatings Obtained by the HVOF Method // Coatings. – 2024. –Vol. 14, No. 3. – P. 264. https://doi.org/10.3390/coatings14030264
68. Huang C., Du L., Zhang W. Friction and Wear Characteristics of Plasma-Sprayed Self-Lubrication Coating with Clad Powder at Elevated Temperatures up to 800 °C // J. Therm. Spray Technol. – 2014. – Vol. 23. – P. 463–479. https://doi.org/10.1007/s11666-013-9996-6
69. Chhabra P., Kaur M., Singh S. High Temperature Tribological Performance of Atmospheric Plasma Sprayed Cr3C2–NiCr Coating on H13 Tool Steel // Mater. Today: Proc. – 2020. – Vol. 33. – P. 1518–1530. https://doi.org/10.1016/j.matpr.2020.03.536
70. Prudenziati M., Gazzadi G.C., Medici M., et al. Cr3C2–NiCr HVOF-Sprayed Coatings: Microstructure and Properties Versus Powder Characteristics and Process Parameters // J. Therm. Spray Technol. – 2010. – Vol. 19. – P. 541–550. https://doi.org/10.1007/s11666-009-9458-3
71. Mahade S. Investigating Load-Dependent Wear Behavior and Degradation Mechanisms in Cr3C2–NiCr Coatings Deposited by HVAF and HVOF // J. Mater. Res. Technol. – 2021. – Vol. 15. https://doi.org/10.1016/S0921-5093(00)01383-6
72. Bobzin, K., Zhao, L., Oete, M., Königstein, T., & Steeger, M. Impact wear of an HVOF-sprayed Cr3C2–NiCr coating // International Journal of Refractory Metals and Hard Materials. – 2017. – Vol. 70. – P. 281–287. https://doi.org/10.1016/j.ijrmhm.2017.10.011
73. Ding, Y. Effects of elevated temperature exposure on the microstructural evolution of Ni(Cr)-Cr3C2 coated 304 stainless steel (Doctoral dissertation). University of Nottingham. – 2009.
Рецензия
Для цитирования:
Курбанбеков Ш.Р., Балтабаева Д.Э., Сейтов Б.Ж., Амангельдиева Ю.О., Әбдімүтәліп А.Н. ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА И ФАЗОВЫЙ СОСТАВ ПОКРЫТИЙ Cr3C2–NiCr, ПОЛУЧЕННЫХ МЕТОДОМ HVOF: ОБЗОР. Вестник НЯЦ РК. 2025;(3):14-24. https://doi.org/10.52676/10.52676/1729-7885-2025-3-14-24
For citation:
Kurbanbekov Sh.R., Baltabaeva D.E., Seytov B.Zh., Amangel'dieva Yu.O., Abdimutalip A.N. REVIEW OF THE PHYSICAL AND MECHANICAL PROPERTIES AND PHASE COMPOSITION OF Cr3C2–NiCr COATINGS DEPOSITED BY THE HVOF METHOD. NNC RK Bulletin. 2025;(3):14-24. (In Russ.) https://doi.org/10.52676/10.52676/1729-7885-2025-3-14-24