FIRST-PRINCIPLES STUDY OF THE STRUCTURAL, ELECTRONIC, AND MECHANICAL PROPERTIES OF CuNiZ (Z = Al, Ga, Sb, Sn) HALF-HEUSLER ALLOYS
https://doi.org/10.52676/1729-7885-2025-2-118-124
Abstract
In this study, a systematic investigation of the structural, electronic, and mechanical properties of CuNiZ (Z = Al, Ga, Sb, Sn) half-Heusler alloys was carried out based on density functional theory (DFT). The obtained results confirm the dynamical and mechanical stability of these alloys and provide insights into their structural symmetry and bonding nature. The electronic structure analysis revealed that CuNiZ alloys exhibit metallic behavior, while the calculated elastic moduli and Poisson's ratio characterize their mechanical strength. Furthermore, the calculations indicated the dominance of ionic bonding in these alloys and confirmed their compliance with fundamental mechanical stability criteria. The CuNiAl, CuNiSb, and CuNiSn alloys were found to be mechanically stable, with their anisotropy coefficients and other elastic parameters determined. This study demonstrates that CuNiZ half-Heusler alloys are promising candidates for functional materials. In particular, their mechanical robustness and structural properties make them potential candidates for applications in thermoelectric and spintronic devices.
About the Authors
N. S. SoltanbekKazakhstan
Astana
N. A. Merali
Kazakhstan
Astana
A. U. Abuova
Kazakhstan
Astana
F. U. Abuova
Kazakhstan
Astana
Z. Y. Zakiyeva
Kazakhstan
Astana
T. M. Inerbaev
Kazakhstan
Astana
References
1. Tavares, S., Yang, K., & Meyers, M. A. Heusler alloys: Past, properties, new alloys, and prospects // Progress in Materials Science. – Elsevier, 2023. – V. 132. – P. 101017.
2. Rogl, G., Grytsiv, A., Gürth, M., Tavassoli, A., Ebner, C., Wünschek, A., Puchegger, S., Soprunyuk, V., Schranz, W., Bauer, E., et al. Mechanical properties of half-Heusler alloys // Acta Materialia. – Elsevier, 2016. – V. 107, – P. 178–195.
3. Elphick, K., Frost, W., Samiepour, M., Kubota, T., Takanashi, K., Sukegawa, H., Mitani, S., & Hirohata, A. Heusler alloys for spintronic devices: Review on recent development and future perspectives // Science and Technology of Advanced Materials. – Taylor & Francis, 2021. – V. 22(1). – P. 235–271.
4. Webster, P. J. Heusler alloys // Contemporary Physics. – Taylor & Francis, 1969. V. 10(6). – P. 559–577.
5. Abuova, A., Merali, N., Abuova, F., Khovaylo, V., Sagatov, N., & Inerbaev, T. (2022). Electronic properties and chemical bonding in V₂FeSi and Fe₂VSi Heusler alloys // Crystals. – MDPI, 2022. – V. 12(11). – P. 1546.
6. Abuova, F., Inerbaev, T., Abuova, A., Merali, N., Soltanbek, N., Kaptagay, G., Seredina, M., & Khovaylo, V. Structural, electronic, and magnetic properties of Mn₂Co₁₋ₓVXZ (Z = Ga, Al) Heusler alloys: An insight from DFT study // Magnetochemistry. – MDPI, 2021. – V. 7(12). – P. 159.
7. Rogl, G., & Rogl, P. F. Development of thermoelectric half-Heusler alloys over the past 25 years // Crystals, – MDPI, 2023. – V. 13(7). – P. 1152.
8. Quinn, R. J., & Bos, J.-W. G. Advances in half-Heusler alloys for thermoelectric power generation // Materials Advances. – Royal Society of Chemistry, 2021. – V. 2(19). – P. 6246–6266.
9. Elphick, K., Frost, W., Samiepour, M., Kubota, T., Takanashi, K., Sukegawa, H., Mitani, S., & Hirohata, A. Heusler alloys for spintronic devices: Review on recent development and future perspectives // Science and Technology of Advanced Materials. – Taylor & Francis, 2021. – V. 22(1). – P. 235–271.
10. Kresse, G., & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Physical Review B. – American Physical Society, 1996. – V. 54(16). – P. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
11. Kresse, G., & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set // Computational Materials Science. – 1996. – V. 6(1). – P. 15–50. https://doi.org/10.1016/0927- 0256(96)00008-0
12. Perdew, J. P., Burke, K., & Ernzerhof, M. Generalized gradient approximation made simple // Physical Review Letters. – APS, 1996. – V.77(18). – P. 3865.
13. Fu, H., Li, D., Peng, F., Gao, T., & Cheng, X. Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures // Computational Materials Science. – 2008. – V. 44(2). – P. 774–778. https://doi.org/10.1016/j.commatsci.2008.04.014
14. Wang, W.-Z., & Wei, X.-P. Half-metallic antiferromagnetic in Mn₂ZnCa // Computational Materials Science. – 2011. – V. 50(7). – P. 2253–2256. https://doi.org/10.1016/j.commatsci.2011.02.011
15. Guo, S.-D., & Liu, B.-G. (2011). Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke-Johnson exchange potential. Europhysics Letters, 93(4), 47006. https://doi.org/10.1209/0295-5075/93/47006
16. Wu, Z. J., Zhao, E. J., Xiang, H. P., Hao, X. F., Liu, X. J., & Meng, J. Crystal structures and elastic properties of superhard IrN₂ and IrN₃ from first principles // Physical Review B. – 2007. – V. 76(5). – P. 054115. https://doi.org/10.1103/PhysRevB.76.054115
17. Evecen, M. First-principles study on the structural, elastic, electronic and vibrational properties of scandium-based intermetallic compounds (ScX, X = Co, Rh, and Ir) under pressure // Journal of Nanoelectronics and Optoelectronics. 2017. – V. 12(2). – P. 100–108. https://doi.org/10.1166/jno.2017.2042
Review
For citations:
Soltanbek N.S., Merali N.A., Abuova A.U., Abuova F.U., Zakiyeva Z.Y., Inerbaev T.M. FIRST-PRINCIPLES STUDY OF THE STRUCTURAL, ELECTRONIC, AND MECHANICAL PROPERTIES OF CuNiZ (Z = Al, Ga, Sb, Sn) HALF-HEUSLER ALLOYS. NNC RK Bulletin. 2025;(2):118-124. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-2-118-124