Preview

NNC RK Bulletin

Advanced search

RESEARCH OF TRIBOLOGICAL PROPERTIES OF Al65Cu20Fe15 QUASICRYSTALLINE COATINGS OBTAINED BY HVOF METHOD

https://doi.org/10.52676/1729-7885-2025-2-142-150

Abstract

This research investigates the tribological properties and microhardness of Al₆₅Cu₂₀Fe₁₅ quasicrystalline coatings deposited on U8G tool steel using the high-velocity oxy-fuel (HVOF) method. Special attention is given to the effect of air supply pressure (1.9 bar, 2.1 bar, 2.3 bar) on the wear resistance of the coatings. The research was conducted using the ball-on-disk method, while the microstructure was analyzed with a scanning electron microscope (SEM). The coating deposited at a propane pressure of 2 bar, oxygen pressure of 2.1 bar, and air pressure of 2.1 bar exhibited the smallest wear track width (902 µm) and a stable friction coefficient (μ ≈ 0.4), confirming its wear resistance. The Vickers microhardness of the coating reached 800 HV, indicating high strength. These findings highlight the potential of quasicrystalline coatings for use in high-wear environments, particularly in the aerospace, automotive, and mechanical engineering industries. The research aligns with the Sustainable Development Goals, specifically the "Industry, Innovation, and Infrastructure" initiative, by contributing to the development of wear-resistant coatings with enhanced performance characteristics.

About the Authors

S. R. Kurbanbekov
Khoja Ahmed Yasawi International Kazakh-Turkish University
Kazakhstan

Turkestan



A. N. Abdimutalip
Khoja Ahmed Yasawi International Kazakh-Turkish University
Kazakhstan

Turkestan



D. E. Baltabayeva
Khoja Ahmed Yasawi International Kazakh-Turkish University
Kazakhstan

Turkestan



References

1. Yeong-Ho, S.; Baek, S. H.; Kim, B. K.; Hwang, J. H.; Lee, J. H.; Song, G. D. Comparison of Durability and Gamma-Ray Shielding Performance of High-Velocity Oxy¬gen Fuel Tungsten Carbide-Based Coatings on ColdRolled Steel Surface // Crystals. – 2025. – Vol. 15(1). – P. 21.

2. Nie, H.; Li, Z.; Zhou, H.; Wu, J.; Wen, G.; Li, Y. Study on the wear resistance and mechanism of HVOF-sprayed WC10Co4Cr coatings //Surf. Coat. Technol. – 2024. – Vol. 494. – P. 131368.

3. Kumar, V.; Verma, R. Effect of GNP and laser-surface texturing on HVOF sprayed WC10Co4Cr coatings for high-wear resistance //Tribol. Int. – 2023. – Vol. 178. – P. 108057.

4. Kumar, R.; Sharma, S.; Singh, J.P.; Gulati, P.; Singh, G.; Dwivedi, S.P.; Li, C.; Kumar, A.; Tag-Eldin, E.M.; Abbas, M. Enhancement in wear-resistance of 30MnCrB5 boron steel-substrate using HVOF thermal sprayed WC–10% Co–4% Cr coatings: A comprehensive research on micro¬structural, tribological, and morphological analysis // J. Mater. Res. Technol. – 2023. – Vol.27. – P. 1072– 1096.

5. Mishra, B.B.; Nautiyal, H. Frictional and wear behavior of Cr3C2-NiCr coating on AISI-304 stainless steel //Adv. Ma¬ter. Process. Technol. – 2022. – Vol. 8. – P. 4007– 4017.

6. Wen, Y.; Zhang, Y.; Zhang, X.; Zhao, Z.; Yan, Q. The tribological behavior of Cu-based brake materials against Cr₃C₂-NiCr coated steel disks with varying roughness. Tribol. Trans. 2024; accepted.

7. Ge, Y.; Xi, H.; Kong, D. Structural Evolution, Phase Tran¬sition and High-Temperature Tribological Properties of Cr₃C₂ Reinforced WC-10Co4Cr Coatings by Laser Clad¬ding // Ind. Lubr. Tribol. – 2025. – Vol. 77(4). – P. 582–591.

8. Hao, K.; Huang, J.; Liu, H.; Wang, Z.; Qiu, Z.; Zheng, Z.; Zeng, D. Improving Thermal Shock and Oxidation Resis¬tance of Cr₃C₂/WC-NiCr Cermet Coating by Embedding Large NiCrAlY Superalloy Particles //Ceramics Inter¬national. – 2024. – Vol. 50(24). – P. 54737–54752.

9. Torskaya E. V. et al. Processing and tribological properties of PEO coatings on AlZn5. 5MgCu aluminum alloy with incorporated Al-Cu-Fe quasicrystals //Ceramics. – 2023. – Vol. 6. – No. 2. – P. 858–871. https://doi.org/10.3390/ceramics6020049

10. Fatoba O. S., Akinlabi S. A., Akinlabi E. T. Effects of Fe addition on the microstructure and corrosion properties of quasicrystalline Al-Cu-Fe coatings //2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). – IEEE, 2018. – P. 74–79. https://doi.org/10.1109/ICMIMT.2018.8340424

11. Ekimov E. A. i dr. Kompozitnyy material na osnove kvazikristalla sistemy Al-Cu-Fe i sposob ego polucheniya.

12. Nascimento L., Melnyk A. Quasicrystalline Phase Forma¬tion of the Al67Cu26Fe15 Alloy //Semina: Ciências Exa¬tas e Tecnológicas. – 2019. – Vol. 40. – No. 1. – P. 3–12. https://doi.org/10.5433/1679- 0375.2019v40n1p3 13. Peskova A. S. i dr. Splav na osnove kvazikristalla sistemy Al-Cu-Fe dlya naneseniya iznosostoykogo, nanostrukturnogo pokrytiya. – 2011. https://doi.org/ 10.26160/2658-3305-2023-19-185-189

13. Bakhtiari H. et al. The Methods of Quasicrystals Producing //Journal of Environmental Friendly Materials. – 2021. – Vol. 5. – No. 1. – P. 59–68.

14. Frolov G. O. i dr. Teplofizicheskie kharakteristiki HVAFpokrytiya iz kvazikristallicheskogo splava sistemy Al-CuFe //Dviguni vnutrіshn'ogo zgoryannya. – 2022. – No. 2. – P. 61–68.

15. Polonskyy V. A., Sukhova O. V. Development of compo¬site material reinforced with decagonal quasicrystals for working in sea atmosphere //Journal of Chemistry & Tech¬nologies. – 2021. – Vol. 29. – No. 4. http://chemistry.dnu.dp.ua/

16. Tsetlin M. B. i dr. Kompozitnyy material na osnove politetraftoretilena i kvazikristallicheskogo napolnitelya Al-Cu-Fe s ul'tranizkim iznosom: morfolo¬giya, tribologicheskie i mekhanicheskie svoystva //Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya. – 2018. – No. 3. – P. 83–92.

17. Fatoba O. S. et al. Microstructural analysis, micro-hardness and wear resistance properties of quasicrystalline Al– Cu–Fe coatings on Ti-6Al-4V alloy //Materials Research Express. – 2018. – Vol. 5. – No. 6. – P. 066538. https://doi.org/10.1088/2053-1591/aaca70

18. Nascimento L. Icosahedral Phase of Al65Cu25Fe15 //Journal of Experimental Techniques and Instrumentation. – 2020. – Vol. 4. – No. 01. – P. 1–14. https://doi.org/10.30609/jeti.v4i01.7558

19. Kuis D. V. i dr. Alyuminievyy kompozit, armirovan¬nyy kvazikristallicheskimi chastitsami Al-Cu-Fe //Trudy BGTU. Lesnaya i derevoobrabatyvayushchaya promyshlennost'. – 2015. – No. 2 (175). – P. 229–233.

20. Rodnikova I. S. i dr. Kompozitnyy material na osnove sverkhvysokomolekulyarnogo polietilena i kvazikristallicheskogo napolnitelya (Al-Fe-Cu) //Uspekhi v khimii i khimicheskoy tekhnologii. – 2020. – Vol. 34. – No. 7 (230). – P. 129–131.

21. Xin X. et al. Single-phase quasicrystalline Al–Cu–Fe thin film prepared by direct current magnetron sputtering on stainless steel //Thin Solid Films. – 2022. – Vol. 753. – P. 139272. https://doi.org/10.1016/j.tsf.2022.139272

22. Chukov D. I. i dr. Polimer-kvazikristallicheskaya poroshkovaya kompozitsiya dlya polucheniya antikorroziynykh zashchitnykh pokrytiy. – 2017.

23. Yudin G. A., Abuzin Yu. A., Tyurina S. A. Issledovanie termokhimicheskoy stabil'nosti kvazikristallov v vysokonapolnennom km sistemy 30% Cu-70% kvazikristall, poluchennogo metodom kholodnogo gazodinamicheskogo napyleniya //Mezhdu-narodnyy nauchno-issledovatel'skiy zhurnal. – 2020. – No. 12-1 (102). – P. 76–82.

24. Mora Dzh. i dr. Tverdye kvazikristallicheskie pokry¬tiya, nanesennye metodom vysokoenergeti¬ches-kogo termicheskogo napyleniya dlya umen'sheniya obledene¬niya komponentov aerokonstruktsiy // Pokrytiya. – 2020. – Vol. 10. – No. 3. – S. 290.

25. Wolf W. et al. Wear and corrosion performance of Al-CuFe-(Cr) quasicrystalline coatings produced by HVOF //Journal of Thermal Spray Technology. – 2020. – Vol. 29. – P. 1195–1207.

26. Souza T. A. et al. Analysis of the surface properties of Al Cu Fe B and Al Co Cu quasicrystalline coatings produced by HVOF //MRS Communications. – 2021. – Vol. 11. – No. 6. – P. 873–878.

27. Souza T. A. et al. Analysis of the surface properties of Al–Cu–Fe–B and Al–Co–Cu quasicrystalline coatings produced by HVOF //MRS Communications. – 2021. – Vol. 11. – No. 6. – P. 873–878.

28. Parsamehr H. et al. Thermal spray coating of Al-Cu-Fe quasicrystals: Dynamic observations and surface properties //Materialia. – 2019. – Vol. 8. – P. 100432. https://doi.org/10.1016/j.mtla.2019.100432

29. Li Z. et al. Microstructure and Tribological Properties of AlCuFeSc Coatings: Effects of Surface Roughness and Quasi-Crystalline i-Phase Content //Metallophysics & Advanced Technologies/Metallofizika i Novejsie Tehnologii. – 2022. – Vol. 44. – No. 12.

30. Feitosa F. R. P. et al. Effect of oxygen/fuel ratio on the microstructure and properties of HVOF-sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings //Surface and Coatings Technology. – 2018. – Vol. 353. – P. 171– 178. https://doi.org/10.1016/j.surfcoat.2018.08.081

31. Yang Q., Dolatabadi A., Golovin K. Durable Icephobic and Erosion Resistant Coatings Based on Quasicrystals // SAE Technical Paper. – 2023. – Vol. 1. – P. 1455. https://doi.org/10.4271/2023-01-1455

32. Feitosa F. R. P. et al. Efeito da relação oxigênio/combus¬tível na microstrutura e propriedades de revestimentos quasicristalinos AlCuFeB e AlCoCu produzidos por HVOF. – 2018.

33. Sil'va Gedes de Lima B. A. i dr. Samo smazyvayu¬shchiesya, s nizkim koeffitsientom treniya, iznosostoykie kvazikristallicheskie pokrytiya na osnove alyuminiya // Nauka i tekhnologiya perspektivnykh materialov. – 2016. – T. 17. – No. 1. – P. 71–79.

34. Anusha K., Routara B. C., Guha S. A review on highvelocity oxy-fuel (HVOF) coating technique //Journal of The Institution of Engineers (India): Series D. – 2023. – Vol. 104. – No. 2. – P. 831–848.

35. Rakhadilov B. K., Muktanova N., Zhurerova L. G. Primenenie tekhnologii HVOF dlya polucheniya iznosostoykikh pokrytiy na osnove WC–obzor //Vestnik NYaTs RK. – 2023. – No. 1. – P. 4–14. https://doi.org/10.52676/1729-7885-2023-1-4-14

36. Rakhadilov B. K., Muktanova N., Kakimzhanov D. N. Vliyanie var'irovaniya rasstoyaniya napyleniya na strukturno-fazovoe sostoyanie i mekhano-tribologicheskie svoystva pokrytiy na osnove 86WC-10Co-4Cr, poluchennykh metodom HVOF // Vestnik NYaTs RK. – 2024. – No. 3. – P. 91–104. https://doi.org/10.52676/1729-7885-2024-3-91-104

37. Gallyamov A. M. i dr. Vosstanovlenie ekspluatatsionnykh svoystv otvetstvennykh detaley metodom vysokoskorostnogo napyleniya (HVOF) //Nauchnotekhnicheskiy vestnik Povolzh'ya. – 2015. – No. 2. – P. 94–98.

38. Tambovtsev A. S. i dr. Nanesenie zashchitnykh pokrytiy dlya toplivno-energeticheskogo kompleksa metodom plazmennogo napyleniya // Vestnik Permskogo natsio¬nal'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika. – 2022. – No. 71. – S. 156–166. https://doi.org/10.15593/2224-9982/2022.71.17

39. Anusha K., Routara B. C., Guha S. A review on highvelocity oxy-fuel (HVOF) coating technique //Journal of The Institution of Engineers (India): Series D. – 2023. – Vol. 104. – No. 2. – P. 831–848.

40. Raza A. et al. An influence of oxygen flow rate and spray distance on the porosity of HVOF coating and its effects on corrosion — A review //Materials. – 2022. – Vol. 15. – No. 18. – P. 6329. https://doi.org/10.3390/ma15186329


Supplementary files

Review

For citations:


Kurbanbekov S.R., Abdimutalip A.N., Baltabayeva D.E. RESEARCH OF TRIBOLOGICAL PROPERTIES OF Al65Cu20Fe15 QUASICRYSTALLINE COATINGS OBTAINED BY HVOF METHOD. NNC RK Bulletin. 2025;(2):142-150. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-2-142-150

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)