Preview

NNC RK Bulletin

Advanced search

OPTIMIZATION OF THE DC-60 ACCELERATOR PARAMETERS FOR IRRADIATION OF PET FILMS WITH HEAVY Kr IONS

https://doi.org/10.52676/1729-7885-2025-2-165-173

Abstract

This paper discusses the setup and optimization of the DC-60 cyclotron operating mode for irradiating polyethylene terephthalate (PET) films with heavy krypton ions to create track membranes. The stages of accelerator tuning are described, including calculations of acceleration parameters and the adjustment of the radio frequency (RF) system for krypton plasma generation. Key parameters are considered, such as magnet current, inflector and deflector voltages, and beam characteristics at the accelerator output. Special attention is given to the beam transport and focusing system, and the optimization of irradiation conditions to ensure the required accuracy and reproducibility of experiments. The results obtained are important for the further development of ion-track modification methods for polymer materials and their application in various technological and commercial fields.

About the Authors

A. M. Temir
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



I. A. Ivanov
RSE “Institute of Nuclear Physics” ME RK; L.N. Gumilyov Eurasian National University
Kazakhstan

Almaty

Astana 



M. V. Koloberdin
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



A. D. Sapar
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



D. A. Mustafin
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



E. O. Ungarbayev
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



E. V. Bihert
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



B. S. Amanzgulov
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



A. S. Seitbayev
RSE “Institute of Nuclear Physics” ME RK
Kazakhstan

Almaty



S. S. Sembayev
RSE “Institute of Nuclear Physics” ME RK; L.N. Gumilyov Eurasian National University
Kazakhstan

Almaty

Astana 



I. K. Tleubay
RSE “Institute of Nuclear Physics” ME RK; L.N. Gumilyov Eurasian National University
Kazakhstan

Almaty

Astana 



References

1. Zdorovets M., Ivanov I., Koloberdin M., Kozin S., Alexandrenko V., Sambaev E., Kurakhmedov A., Ryskulov A. Accelerator complex based on DC-60 cyclotron // Proceedings of the 24th Russian Particle Accelerator Conf. – Geneva: JACoW, 2014. – P. 287–289.

2. Mashentseva A. A., Sutekin D. S., Rakisheva S. R., Barsbay M. Composite Track-Etched Membranes: Synthesis and Multifaced Applications // Polymers. – 2024. – Vol. 16, No. 18. – P. 2616.

3. He Z.-B., Guo S.-L. Applications of Nuclear Track Membranes to Filtration of Medical Injections and Various Transfusions to Remove Solid Particles // Physics Procedia. – 2015. – Vol. 80. – P. 131–134.

4. Efferentnaya terapiya. Membrannyy plazmaferez / Voinov V.A. – 5-e izd., pererab. i dop. – Moskva: OAO “Novosti”, – 2010. – 368 p. (In Russ.)

5. Maksimova E.B., Prokof'eva Yu.V., Kazantseva H.H., Pochitalkina I.A. Primenenie trekovykh membran dlya ochistki vody iz prirodnykh vodoemov // Uspekhi v khimii i khimicheskoy tekhnologii. – 2009. – Vol. XXIII, No. 10 (103). – P. 37–41.

6. Kros A., Nolte R. J. M., Sommerdijk N. A. J. M. Conducting Polymers with Confined Dimensions: Track-Etch Membranes for Amperometric Biosensor Applications // Adv. Mater. – 2002. – Vol. 14, No. 23. – P. 1779–1782.

7. Spohr R., Zet C., Eberhard Fischer B., Kiesewetter H., Apel P., Gunko I., Ohgai T., Westerberg L. Controlled fabrication of ion track nanowires and channels // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2010. – Vol. 268, No. 6. – P. 676–686.

8. Apel P.Yu. Track etching technique in membrane technology // Radiation Measurements. – 2001. – Vol. 34. – P. 559–566.

9. Mitrofanov A.V., Apel' P.Yu., Blonskaya I.V., Orelovich O.L. Difraktsionnye fil'try na osnove poliamidnykh i polietilentereftalatnykh trekovykh membran // Zhurnal tekhnicheskoy fiziki. – 2006. – Vol. 76, No. 9. – P. 121–127. (In Russ.)

10. Alisienok O., Lavitskaya A., Shumskaya E., Khoroshko L., Evseychik M., Kozlovskiy A., Zdorovets M., Kanyukov E. PETFmembrany, funktsionalizirovannye nanorazmernym dioksidom titana // Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Sovremennye elektrokhimicheskie tekhnologii i oborudovanie – 2023». – Minsk: BGTU, 2023. – P. 56–58. (In Russ.)

11. Soto Espinoza S., Aguiar C., Richieri F., Grasselli M. Track-etched membrane as fluorescence-based pH biosensor // Reactive and Functional Polymers. – 2019. – Vol. 135. – P. 1–7.

12. Fischer B. E., Spohr R. Production and use of nuclear tracks: imprinting structure on solids // Rev. Mod. Phys. – 1983. – Vol. 55, No. 4. – P. 907–948.

13. Ziegler J. F., Ziegler M. D., Biersack J. P. SRIM – The stopping and range of ions in matter (2010) // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2010. – Vol. 268, No. 11–12. – P. 1818–1823.

14. Gikal B., Dmitriev S., Apel P., Bogomolov S., Borisov O., Buzmakov V., Gulbekyan G., Ivanenko I., Ivanov O., Itkis M., Kazarinov N., Kalagin I., Kolesov I., Papash A., Paschenko S., Tikhomirov A., Khabarov M. DC-60 heavy ion cyclotron complex: The first beams and project parameters // Phys. Part. Nuclei Lett. – 2008. – Vol. 5, No. 7. – P. 642–644.

15. Smirnov V., Vorozhtsov S., Wu X., Alt D., Blosser G., Horner G., Paquette J., Usher N., Vincent J., Neville Z. Experimental Validation of the Field and Beam Dynamics Simulations for a Superconducting Cyclotron // Phys. Part. Nuclei Lett. - 2020. - Vol. 17, No. 2. - P. 204–210.

16. Li P., Yin Z., Ji B., Zhang T., Zhao Z. Development of a low-level RF control system for PET cyclotron CYCIAE- 14 // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2014. – Vol. 735. – P. 184– 187.

17. Kalagin I., Gikal B., Gulbekyan G., Pchelkin N., Prokhorov S. Multigap and Polyharmonic Bunching Systems at FLNR Cyclotrons // Proceedings of the 25th Russian Particle Accelerator Conf. – Geneva: JACoW, 2017. – P. 447-449.

18. Brown T. A., Gillespie G. H. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2000. – Vol. 172, No. 1–4. – P. 338–343.

19. Gikal B. H., Gul'bekyan G. G., Ivanov, G. N., Ivanova, I. B., Kazarinov, N. Yu., Kazacha B. I., Kalagin I. B., Kolecov I. B., Lebedev H. I., Mel'nikov B. H., Cerobaba A. P., Fateev A. A. Cictema tpancpoptipovki puchkov tyazhelykh ionov, vyvedennykh iz tsiklotpona DTs-60 // Soobshchenie OIYaI R9-2006-37. – 2006. – P. 7.


Supplementary files

Review

For citations:


Temir A.M., Ivanov I.A., Koloberdin M.V., Sapar A.D., Mustafin D.A., Ungarbayev E.O., Bihert E.V., Amanzgulov B.S., Seitbayev A.S., Sembayev S.S., Tleubay I.K. OPTIMIZATION OF THE DC-60 ACCELERATOR PARAMETERS FOR IRRADIATION OF PET FILMS WITH HEAVY Kr IONS. NNC RK Bulletin. 2025;(2):165-173. (In Russ.) https://doi.org/10.52676/1729-7885-2025-2-165-173

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)