Preview

NNC RK Bulletin

Advanced search

SALT WATERS OF MANGYSTAU AS AN OBJECT OF STUDY FOR LITHIUM EXTRACTION: NATURAL AND MAN-MADE SOURCES

https://doi.org/10.52676/1729-7885-2025-3-86-93

Abstract

The paper presents a comprehensive analysis of the lithium content in aqueous samples of various origins in order to assess the prospects for their industrial use. It has been established that the most appropriate source of lithium is brine formed during desalination of seawater at the MAEK LLP enterprise, with a mass concentration of lithium of 2.10 mg/l (0.0021%). Spectral and X-ray phase analyses have shown that the main mineral phase in the solid sediment is calcium sulfate (gypsum) with a fraction of up to 95.2%, with admixtures of bassanite and halite. It has been established that lithium is predominantly preserved in the liquid phase after evaporation, which makes it advisable to use methods of extraction from solution, such as ion exchange, membrane technologies and sorption processes. The ionic-salt composition of the brines indicates a sodium chloride type with high mineralization, the presence of sulfates, magnesium and other ions, which requires preliminary preparation of the solution before lithium extraction. Despite the low concentration of lithium, the combination of physical and chemical characteristics of the studied brines allows them to be considered as an additional source of lithium raw materials.

About the Authors

A. K. Serikbayeva
Caspian University of Technology and Engineering named after Sh. Yessenov
Kazakhstan

Aktau



A. N. Boranbayeva
Caspian University of Technology and Engineering named after Sh. Yessenov
Kazakhstan

Aktau



References

1. William T. Stringfellow and Patrick F. Dobson. Technology for the Recovery of Lithium from Geothermal Brines: A review // Energies. – 2021. Vol. 14 (20). – Art. no. 6805. https://doi.org/10.3390/en14206805

2. Tadesse, B.; Makuei, F.; Albijanic, B.; Dyer, L. The beneficiation of lithium minerals from hard rock ores: A review // Miner. Eng. – 2019. – Vol. 131, – P . 170–184. https://doi.org/10.1016/j.mineng.2018.11.023

3. Meng, F.; McNeice, J.; Zadeh, S.S.; Ghahreman, A. Review of Lithium Production and Recovery from Minerals, Brines, andLithium-Ion Batteries // Miner. Process. Extr. Met. Rev. – 2019. – Vol. 42. – P. 123–141. https://doi.org/10.1080/08827508.2019.1668387

4. Mohr, S.H.; Mudd, G.M.; Giurco, D. Lithium Resources and Production: Critical Assessment and Global Projections // Minerals. – 2012. – Vol. 2. – P. 65–84. https://doi.org/10.3390/min2010065

5. Neupane, G.; Wendt, D.S. Assessment of mineral resources in geothermal brines in the US. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 13–15 February 2017; Stanford University: Stanford, CA, USA, 2017.

6. Neupane, G.; Wendt, D.S. Potential economic values of minerals in brines of identified hydrothermal systems in the US // Trans.-Geotherm. Resour. Counc. – 2017. – Vol. 41, – P. 1938–1956.

7. Simmons, S.; Kirby, S.; Verplanck, P.; Kelley, K. Strategic and critical elements in produced geothermal fluids from Nevada andUtah. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2018; Stanford University: Stanford, CA, USA, 2018.

8. Gallup, D.L. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery // Ore Geol. Rev. – 1998. – Vol. 12. – P. 225–236. https://doi.org/10.1016/S0169-1368(98)00004-3

9. Hund, K.; Porta, D.L.; Fabregas, T.P.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean EnergyTransition; World Bank Publications: Washington, DC, USA, 2020.

10. Xu, P.; Hong, J.; Qian, X.M.; Xu, Z.W.; Xia, H.; Tao, X.C.; Xu, Z.Z.; Ni, Q.Q. Materials for lithium recovery from Salt Lake brine // J.Mater. Sci. – 2021. – Vol. 56. – P. 16–63. https://doi.org/10.1007/s10853-020-05019-1

11. Snydacker, D.H.; Hegde, V.I.; Aykol, M.; Wolverton, C. Computational Discovery of Li-M-O Ion Exchange Materials for LithiumExtraction from Brines // Chem. Mater. – 2018. – Vol. 30, – P. 6961–6968. https://doi.org/10.1021/acs.chemmater.7b03509

12. Shi, X.C.; Zhou, D.F.; Zhang, Z.B.; Yu, L.L.; Xu, H.; Chen, B.Z.; Yang, X.Y. Synthesis and properties of Li1.6Mn1.6O4 and itsadsorption application // Hydrometallurgy. – 2011. – Vol. 110. – P. 99–106. https://doi.org/10.1016/j.hydromet.2011.09.004

13. Perez, W.; Barrientos, H.A.C.; Suarez, C.; Bravo, M. Method for the Production of Battery Grade Lithium Carbonate from Naturaland Industrial Brines // U.S. Patent 8,691,169 B2, 8 April 2014.

14. Munk, L.; Hynek, S.; Bradley, D.C.; Boutt, D.; Labay, K.A.; Jochens, H. Chapter 14: Lithium brines: A global perspective // Rev.Econ. Geol. – 2016. – Vol. 18. – P. 339–365.

15. Mceachern, P.M.; Wong, N.; Andric, M. Method and apparatus for the treatment of water with the recovery of metals // U.S. Patent Application 2020/0299805 A1, 24 September 2020.

16. US Geological Survey // Mineral Commodities Summary 2020; U.S. Geological Survey: Reston, VA, USA, 2020; P. 204.

17. Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry // Renew. Sustain. Energy Rev. – 2012. – Vol. 16. – P. 1735–1744. https://doi.org/10.1016/j.rser.2011.11.023

18. Baratov R. T., Abisheva S. Zh., Karlygasheva A. B. Perspektivy litienosnosti pripoverkhnostnykh vod solonchakov Chu-Sarysuyskoy vpadiny // Mineral'nye resursy Kazakhstana. – 2023. – No. 4. – P. 22–29. (In Russ.)

19. Baratov R.T., Abisheva S.Zh., Karlygasheva A.B. Lithium and Gold Content in Salt Domes and Saline Lands of Western and Southern Kazakhstan // Applied Sciences. – 2024. – Vol. 14(12). – Art. no. 5351. https://doi.org/10.3390/app14125351

20. Chensizbaev D.K., Adenova A. Zh., Koshpanova A.E. Opredelenie soderzhaniya litiya v promyshlennykh vodakh metodom kapillyarnogo elektroforeza // Vestnik NAN RK. Seriya khimii i tekhnologii. – 2023. – No.3(453). – P. 60–68. (In Russ.)

21. Karshigina L.Z., Abisheva S. Zh., Bochevskaya E.N. i dr. Sorbtsionnye metody izvlecheniya litiya iz gidromineral'nogo syr'ya Kazakhstana // Gornyy informatsionno-analiticheskiy byulleten'. – 2021. – No.12. – P. 35–41. (In Russ.)

22. Absametov M.Sh., Ryabtsev I. P. Litievoe syr'e gidromineral'nogo proiskhozhdeniya Kazakhstana: sostoyanie i perspektivy // Izvestiya NAN RK. Seriya geologii i tekhnicheskikh nauk. – 2021. – No.6(450). – P. 102–110. (In Russ.)

23. Chensizbaev D.B., Kan S.M. Faktory i usloviya formirovaniya i osvoeniya promyshlennykh podzemnykh vod yuzhnogo Kazakhstana // Gornyy zhurnal Kazakhstana. – 2021. – No. 6. – P. 15–20. (In Russ.)

24. Serikbayeva, A., Taizhanova, L., Suleimenova, B., Altybayeva, Z., Seidalieva, L. Intensification of the Wastewater Treatment Process of a Bitumen Plant with the Production of Recycled Water // Journal of Ecological Engineering. – 2023. – No. 24(2). – P. 295–301. https://doi.org/10.12911/22998993/157021

25. Syrlybekkyzy, S., Serikbayeva, A., Suleimenova, B., ...Dzhumasheva, K., Dosymbekova, G. Study of Ground-water Characteristics in Aktau (Kazakhstan) During Joint Desalination and Decontamination Experiment // Ecologica Montenegrina. – 2024. – Vol. 76. – P. 77–84. https://doi.org/10.37828/em.2024.76.5

26. ГОСТ 18301–87, ГОСТ 32193.5–2013

27. МУ 08–47/081

28. ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера

29. РД 52.24.309–2016

30. СТ РК ГОСТ Р 51593–2003


Supplementary files

Review

For citations:


Serikbayeva A.K., Boranbayeva A.N. SALT WATERS OF MANGYSTAU AS AN OBJECT OF STUDY FOR LITHIUM EXTRACTION: NATURAL AND MAN-MADE SOURCES. NNC RK Bulletin. 2025;(3):86-93. (In Russ.) https://doi.org/10.52676/1729-7885-2025-3-86-93

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)