Preview

NNC RK Bulletin

Advanced search

IONOSPHERIC STORM OF MAY 25/26, 1967 AS A MODEL OF IONOSPHERIC RESPONSE TO EXTREME DISTURBANCE OF THE EARTH'S MAGNETIC FIELD

https://doi.org/10.52676/1729-7885-2025-3-164-175

Abstract

The article presents the results of the study of ionospheric effects of the extreme geomagnetic storm of May 25/26, 1967 (Dst = −387 nT) obtained using ionospheric data measured at five ionospheric stations located in the Central Asian region. The geomagnetic storm with an initial phase lasting approximately 9 hours began at ~20 UT on May 25, which for the region under consideration corresponds to nighttime (at 00:01 LT) on May 26.

The negative ionospheric disturbance lasting about 28 hours, which began at all stations under consideration during the onset of the main phase of the geomagnetic storm, was characterized by a decrease in the critical frequencies of the ionospheric F2 layer foF2 by 2.2 times compared to the foF2 level under quiet geomagnetic conditions. The “G condition” observed during the negative phase of the ionospheric storm, when foF2 foF1, lasted for about 11 hours and indicated significant changes in the thermospheric parameters responsible for the formation of the F-region in the middle latitudes. The anomalous formation of the nighttime E-layer observed at all ionospheric stations is discussed in the context of the physical mechanism of energetic particle precipitation at middle and low latitudes.

The increased values and wave-like variations of the critical frequencies of foF2 observed during the recovery phase of the geomagnetic storm are interpreted in terms of their being caused by traveling atmospheric disturbances (TAD).

The black out event associated with the complete absorption of the sounding signal observed at stations in the Central Asian and Far Eastern regions on May 28 is associated with the impact of the high-intensity solar cosmic ray flux recorded during this period on the lower ionosphere.

The ionospheric storm of May 25/26 can serve as a model of the ionospheric response to an extreme disturbance of the Earth's magnetic field.

About the Authors

G. I. Gordienko
“Institute of Ionosphere” LLP
Kazakhstan

Almaty



Yu. G. Litvinov
“Institute of Ionosphere” LLP
Kazakhstan

Almaty



M. Yu. Zhiganbayev
“Institute of Ionosphere” LLP
Kazakhstan

Almaty



References

1. Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R. P., and Howard, R. A. Solar source of the largest geomagnetic storm of cycle 23 // Geophys. Res. Lett. – 2005. – Vol. 32. – At. no. L12S09. https://doi.org/10.1029/2004GL021639

2. Daglis, I. A., Chang, L. C., Dasso, S., Gopalswamy, N., Khabarova, O. V., Kilpua, E., Lopez, R., Marsh, D., Matthes, K., Nandy, D., Seppälä, A., Shiokawa, K., Thiéblemont, R., and Zong, Q. Predictability of variable solar–terrestrial coupling // Ann. Geophys. – 2021. – Vol. 39. – P. 1013–1035. https://doi.org/10.5194/angeo-39-1013-2021

3. Lam, H.-L., Boteler, D. H., and Trichtchenko, L. Case studies of space weather events from their launching on the Sun to their impacts on power systems on the Earth // Annales Geophysicae. – 2002. – Vol. 20. – P. 1073–1079.

4. Lanzerotti, L. J., 2001. Space weather effects on technologies // Space Weather. – 2001. – Vol. 125. – 11.

5. Basu, Su., Basu, S., Makela, J. J., MacKenzie, E., Doherty, P., Wright, J. W., Rich, F., Keskinen, M. J., Sheehan, R. E., and Coster, A. J. Large magnetic storm-induced nighttime ionospheric flows at midlatitudes and their impacts on GPS-based navigation systems // J. Geophys. Res. – 2008. – Vol. 113. – Art. no. A00A06. https://doi.org/10.1029/2008JA013076

6. Afraimovich, E.L., Demyanov, V.V., Kondakova, T.N. Degradation of performance of the navigation GPS system in geomagnetically disturbed conditions // GPS Solutions. – 2003. – Vol. 7(2). – P. 109–119.

7. Bolduc, L. GIC observations and studies in the Hydro-Quebec power system // J Atmos. Sol. Terr. Phys. – 2002. – Vol. 64. – P. 1793–1802.

8. Gaunt, C. T., and Coetzee, G. Transformer failures in regions incorrectly considered to have low GIC-risk // In Power Tech, 2007 IEEE Lausanne, Switzerland. – P. 807–812.

9. Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., et al. Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022 // Space Weather. – 2022. – Vol. 20, e2022SW003152. https://doi.org/10.1029/2022SW003152

10. Mike Wall, 2016. How a 1967 Solar Storm Nearly Led to Nuclear War, https://www.space.com/33687-solar-storm-cold-war-false-alarm.html.

11. Akasofu S.I. and Perreault P.D. The geomagnetic storm of May 25-26, 1967. // WDC-A, Upper Atmosphere Geophysics, ESSA, Boulder, Colorado. – P. 92–101.

12. Knipp, D. J., Ramsay, A.C., Beard, E. D. et al. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses // Space Weather. –2016. – Vol.14. – P. 614–633. https://doi.org/10.1002/2016SW001423

13. Report UAG-91 “Combined Catalog of Ionosphere Vertical Soundings”, World Data Centers for Solar-Terrestrial Physics, NGDC, Boulder, Colorado, December 1984.

14. Lauter, E. A., Entzian, G. Winter anomaly 1980/81 as an example of stratomesospheric coupling // Phys. Solariterr. – 1982. – Vol. 18. – P. 83–90.

15. Kokourov, V. D., 2003. Minimum frequency of reflections as a climatic characteristic of the upper atmosphere // Geomagnetism and Aeronomy. – 2003. – Vol. 43(2). – P. 274–276 (In Russ.).

16. Barta, V., Sátori, G., Berényi, K.A., Kis, Á. and Williams, E. Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa // Ann. Geophys. – 2019. – Vol. 37. – P. 747–761. https://doi.org/10.5194/angeo-37-747-2019

17. Bostrom, C. O., Kohl, J. W., Williams, D. J. and Arens, J. F., 1969. The solar cosmic ray events in May, 1967. Report UAG-5 “Data on Solar Event of May 23, 1967 and its Geophysical Effects”, WDC-A, Upper Atmosphere Geophysics, ESSA, Boulder, Colorado, 68–70.

18. Van Allen, J.A., 1969. Solar X-ray flares on 23 May 1967. Report UAG-5 “Data on Solar Event of May 23, 1967 and its Geophysical Effects”, WDC-A, Upper Atmosphere Geophysics, ESSA, Boulder, Colorado, 46–47.

19. Danilov, A.D. and Morozova, L.D. Ionospheric storms in the F2 region: Morphology and physics (Review) // Geomagn. Aeron. – 1985. – Vol. 25. – P. 593–605.

20. Buonsanto, M.J. Ionospheric Storms – A Review // Space Science Reviews. – 1099. – Vol. 88. – P. 563–601.

21. Mikhailov, A.V. Ionospheric F2-layer storms // Fisica de la Tierra. – 2000. – Vol. 12. – P. 223–262.

22. Echer, E., Gonzalez, W. D., and Tsurutani, B. T. Interplanetary conditions leading to superintense geomagnetic storms (Dst 250 nT) during solar cycle 23 // Geophysical Research Letters. – 2008. – Vol. 35. – L06S03. https://doi.org/10.1029/2007GL031755

23. Echer, E., Gonzalez, W.D., Tsurutani, B.T. Statistical studies of geomagnetic storms with peak Dst 50 nT from 1957 to 2008 // Journal of Atmospheric and Solar-Terrestrial Physics. – 2011. – Vol. 73. – P. 1454–1459.

24. Paznukhov, V. V., Altadill. D., and Reinisch, B. W. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes // J. Geophys. Res. – 2009. – Vol. 114. – A12319. https://doi.org/10.1029/2009JA014479

25. Danilov, A.D. Ionospheric F-region response to geomagnetic disturbances // Advances in Space Research. – 2013. – Vol. 52. – P. 343–366.

26. Perrone, L., Mikhailov, A.V., Sabbagh, D. Thermospheric Parameters during Ionospheric G-Conditions // Remote Sens. – 2021. – Vol. 13. – 3440. https://doi.org/10.3390/rs13173440.

27. Wakai, Noboru Quiet and Disturbed Structure and Variations of the Nighttime E Region // J. Geophys. Res. – 1967. – Vol. 72. – P. 4507–4517.

28. Lyons, L. R., and Richmond, A. D. Low-latitude E region ionization by energetic ring current particles // J. Geophys. Res. – 1978. – Vol. 83. – P. 2201– 2204.

29. Tinsley, B. A. Energetic neutral atom precipitation during magnetic storms: Optical emission, ionization, and energy deposition at low and middle latitudes // J. Geophys. Res. – 1979. – Vol. 84. – P. 1855–1864.

30. Gordienko, G. I. Mid-latitude ionospheric effects of the March 13, 1989 magnetic storm // Geomagnetism and Aeronomy. – 1997. – Vol. 37(5), – P. 180–183 (in Rus.).

31. Gordienko, G.I., Vodyannikov, V.V. and Yakovets A.F. Ionospheric disturbances over Alma-Ata during the October-November 2003 magnetic storms // Journal of Geophysical Research. – 2005. – Vol. 110, A09S35. – P. 1–13. https://doi.org/10.1029/2004JA010945

32. Gordienko, G.I., Vodyannikov, V.V., Yakovets A.F. Geomagnetic storm effects in the ionospheric E- and F-regions // Journal of Atmospheric and Solar-Terrestrial Physics. – 2011. – Vol. 73. – P. 1818–1830.

33. Bauske, R., Noel, S. and Pro¨lss G. W., 1997. Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles // Ann. Geophys. – 1997. – Vol. 15. – P. 300–305.


Supplementary files

Review

For citations:


Gordienko G.I., Litvinov Yu.G., Zhiganbayev M.Yu. IONOSPHERIC STORM OF MAY 25/26, 1967 AS A MODEL OF IONOSPHERIC RESPONSE TO EXTREME DISTURBANCE OF THE EARTH'S MAGNETIC FIELD. NNC RK Bulletin. 2025;(3):164-175. (In Russ.) https://doi.org/10.52676/1729-7885-2025-3-164-175

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)