Preview

NNC RK Bulletin

Advanced search

THEORETICAL STUDY OF THE EFFECT OF TEMPERATURE AND DEFECTS ON THE ELASTICITY OF A DIAMOND DEFORMED BY STRETCHING

https://doi.org/10.52676/1729-7885-2025-4-41-46

Abstract

In this work, the diagram of diamond deformation under tension oriented in the direction [111] in the temperature range from 1 to 1700 K is studied in the framework of classical molecular dynamics. The ideal diamond structure is considered, as well as a structure containing a relatively high concentration of defects. To study the elasticity of structures obtained at different temperatures during stretching, anisotropic modeling was performed at atmospheric pressure and the values of deformation and density of the structure over time were calculated. The elasticity of both structures is shown in a wide range of strain values characteristic of each temperature value. It is also shown that a diamond can achieve a plastic state in a narrow range of tensile strength before complete destruction at high temperatures.

About the Authors

T. M. Inerbaev
L.N. Gumilyov Eurasian National University
Казахстан

Astana



A. U. Abuova
L.N. Gumilyov Eurasian National University
Казахстан

Astana



F. U. Abuova
L.N. Gumilyov Eurasian National University
Казахстан

Astana



G. A. Kaptagai
L.N. Gumilyov Eurasian National University
Казахстан

Astana



N. Merali
L.N. Gumilyov Eurasian National University
Казахстан

Astana



Zh. K. Zakieva
L.N. Gumilyov Eurasian National University
Казахстан

Astana



B. M. Satanova
L.N. Gumilyov Eurasian National University
Казахстан

Astana



A. Raskaliev
L.N. Gumilyov Eurasian National University
Казахстан

Astana



References

1. Sundqvist, B. (2021). Carbon under pressure. Physics Reports, 909, 1-73.

2. Field, J. E. (2012). The mechanical and strength properties of diamond. Reports on Progress in Physics, 75(12), 126505.

3. Evans, T., & James, P. F. (1964). A study of the transformation of diamond to graphite. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 277(1369), 260-269.

4. Wilks, J., & Wilks, E. (1991). Properties and applications of diamond. Butterworth-Heinemann, Oxford, 1991, pp. 214–227.

5. Gogotsi, Y. G., Kailer, A., & Nickel, K. G. (1999). Transformation of diamond to graphite. Nature, 401(6754), 663-664.

6. Weidner, D. J., Wang, Y., & Vaughan, M. T. (1994). Strength of diamond. Science, 266(5184), 419-422.

7. Eremets, M. I., Trojan, I. A., Gwaze, P., Huth, J., Boehler, R., & Blank, V. D. (2005). The strength of diamond. Applied Physics Letters, 87(14).

8. Lin, Y., Zhang, L., Mao, H. K., Chow, P., Xiao, Y., Baldini, M., Shu, J., & Mao, W. L. (2011). Amorphous diamond: a high-pressure superhard carbon allotrope. Physical Review Letters, 107(17), 175504.

9. Solopova, N. A., Dubrovinskaia, N., & Dubrovinsky, L. (2013). Raman spectroscopy of glassy carbon up to 60 GPa. Applied Physics Letters, 102(12).

10. Yao, M., Fan, X., Zhang, W., Bao, Y., Liu, R., Sundqvist, B., & Liu, B. (2017). Uniaxial-stress-driven transformation in cold compressed glassy carbon. Applied Physics Letters, 111(10).

11. Chacham, H., & Kleinman, L. (2000). Instabilities in diamond under high shear stress. Physical review letters, 85(23), 4904.

12. Telling, R. H., Pickard, C. J., Payne, M. C., & Field, J. E. (2000). Theoretical strength and cleavage of diamond. Physical Review Letters, 84(22), 5160.

13. Ruoff, A. L. (1979). On the yield strength of diamond. Journal of Applied Physics, 50(5), 3354-3356.

14. Vidable, G. G., Gonzalez, R. I., Valencia, F. J., Amigo, N., Tramontina, D., & Bringa, E. M. (2022). Simulations of plasticity in diamond nanoparticles showing ultrahigh strength. Diamond and Related Materials, 126, 109109.

15. Felix, L. C., Tromer, R. M., Woellner, C. F., Tiwary, C. S., & Galvao, D. S. (2022). Mechanical response of pentadiamond: A DFT and molecular dynamics study. Physica B: Condensed Matter, 629, 413576.

16. Zhou, J., Li, Y., Lu, C., Li, H., Zheng, W., Ma, Y., Gao, Z., Yang, J., & He, Y. (2022). Molecular dynamics simulation of the tensile response and deformation mechanism of diamond/TiC combinations. Computational Materials Science, 215, 111779.

17. Huang, C., Peng, X., Yang, B., Chen, X., Li, Q., Yin, D., & Fu, T. (2018). Effects of strain rate and annealing temperature on tensile properties of nanocrystalline diamond. Carbon, 136, 320-328.

18. Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer physics communications, 271, 108171.

19. Hirel, P. (2015). Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 197, 212-219.

20. O’connor, T. C., Andzelm, J., & Robbins, M. O. (2015). AIREBO-M: A reactive model for hydrocarbons at extreme pressures. The Journal of chemical physics, 142(2).

21. Rozhkov, M. A., Kolesnikova, A., & Romanov, A. (2024). Comparison of Interatomic Potentials for Modeling Defects in Graphene Using Molecular Dynamics. Rev. Adv. Mater. Technol., 6, 35-42.

22. Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X., & Yang, L. H. (2000). Atomistic modeling of the fracture of polycrystalline diamond. Physical Review B, 61(6), 3877.

23. Zhan, H., Zhang, G., Tan, V. B., Cheng, Y., Bell, J. M., Zhang, Y. W., & Gu, Y. (2016). From brittle to ductile: a structure dependent ductility of diamond nanothread. Nanoscale, 8(21), 11177-11184.

24. Baimova, J. А., Rysaeva, L. K., & Rudskoy, A. I. (2018). Deformation behavior of diamond-like phases: Molecular dynamics simulation. Diamond and Related Materials, 81, 154-160.

25. Peng, Q., Chen, G., Huang, Z., Chen, X., Li, A., Cai, X., Zhang, Y., Chen, X. J., & Hu, Z. (2024). Molecular Dynamics Insights into Mechanical Stability, Elastic Properties, and Fracture Behavior of PHOTH-Graphene. Materials, 17(19), 4740.

26. Roundy, D., & Cohen, M. L. (2001). Ideal strength of diamond, Si, and Ge. Physical Review B, 64(21), 212103.

27. Luo, X., Liu, Z., Xu, B., Yu, D., Tian, Y., Wang, H. T., & He, J. (2010). Compressive strength of diamond from first-principles calculation. The Journal of Physical Chemistry C, 114(41), 17851-17853.

28. Jensen, B. D., Wise, K. E., & Odegard, G. M. (2015). Simulation of the elastic and ultimate tensile properties of diamond, graphene, carbon nanotubes, and amorphous carbon using a revised ReaxFF parametrization. The Journal of Physical Chemistry A, 119(37), 9710-9721.


Review

For citations:


Inerbaev T.M., Abuova A.U., Abuova F.U., Kaptagai G.A., Merali N., Zakieva Zh.K., Satanova B.M., Raskaliev A. THEORETICAL STUDY OF THE EFFECT OF TEMPERATURE AND DEFECTS ON THE ELASTICITY OF A DIAMOND DEFORMED BY STRETCHING. NNC RK Bulletin. 2025;(4):41-46. (In Russ.) https://doi.org/10.52676/1729-7885-2025-4-41-46

Views: 140

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)