Preview

NNC RK Bulletin

Advanced search

PHOTOELECTROCHEMICAL WATER SPLITTING SIMULATION: TOWARD A COMPREHENSIVE MODELING FRAMEWORK

https://doi.org/10.52676/1729-7885-2025-4-127-141

Abstract

This study presents a comprehensive computational framework that integrates physics-based modeling and data-driven approaches for analyzing and optimizing photoelectrochemical (PEC) water splitting systems. Utilizing COMSOL Multiphysics 6.1 and MATLAB, we simulate key electrochemical behaviors such as linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). COMSOL’s multiphysics environment allows for the direct incorporation of electrolyte parameters, semiconductor photophysics, and current distribution, while MATLAB enables custom modeling of impedance behavior and predictive LSV analysis using artificial neural networks (ANNs). By coupling computational fluid dynamics (CFD), machine learning, and experimental validation, the proposed methodology provides an in-depth understanding of light-driven hydrogen generation on semiconductor electrodes such as ZnO/BiVO4. Comparative analysis of simulation results shows that COMSOL and MATLAB produce consistent outputs, yet COMSOL demonstrates superior flexibility, accuracy, and ease of use, especially for systems influenced by variable physical and chemical conditions. The study further explores two-phase flow modeling, mesh independence testing, and the influence of gas bubbles on electrolyte conductivity. The findings contribute to the development of efficient, scalable PEC systems for clean hydrogen production and offer a foundation for future integration of hybrid simulation and AI techniques in renewable energy research.

About the Authors

N. Bakranov
Research Group altAir Nanolab LLP
Казахстан

Almaty



B. Seitov
Ahmet Yassawi University
Казахстан

Turkestan



D. Bakranova
SDU University, Faculty of Engineering & Natural Sciences
Казахстан

Kaskelen



E. Fattahi
Department of Physics, Faculty of Science, Sakarya University; Department of Chemical Engineering, University of Tabriz
Иран

Sakarya, Turkey

Tabriz



A. Coruh
Department of Physics, Faculty of Science, Sakarya University
Турция

Sakarya



A. Niaei
Department of Physics, Faculty of Science, Sakarya University
Турция

Sakarya



References

1. Hosseini S.E, Wahid M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 57. – Issue C. – P. 850–866. https://doi.org/10.1016/j.rser.2015.12.112

2. Ma P., Wang D. The principle of photoelectrochemical water splitting. Nanomaterials for Energy Conversion and Storage // World Scientific. – 2018. – Vol. 1. – P. 61.

3. Zhang H., Zhang B., Wang X., Zou L., You J., Lin S. Effective charge separation in photoelectrochemical water splitting: A review from advanced evaluation methods to materials design // Sustain Energy Fuels. – 2024.

4. Ager J.W. Photoelectrochemical approach for water splitting // Solar to Chemical Energy Conversion: Theory and Application. – 2016. – Vol. 249. – P. 60.

5. Feng S., et al. Using hollow dodecahedral NiCo-LDH with multi-active sites to modify BiVO4 photoanode facilitates the photoelectrochemical water splitting performance // Nano Research Energy. – 2024. – Vol. 3(3).

6. Mane P., et al. Recent trends and outlooks on engineering of BiVO4 photoanodes toward efficient photoelectrochemical water splitting and CO2 reduction: A comprehensive review // Int. J. of Hydrogen Energy. – 2022. – Vol. 47(94). – P. 39796–39828.

7. Sung H., et al. Dense/nanoporous bilayer BiVO4 photoanode with outstanding light-absorption efficiency for high-performance photoelectrochemical water splitting // J. of Photochemistry and Photobiology A-Chemistry. – 2024. – P. 449.

8. Fu L., Li Z, and Shang X. Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement // Int. J. of Hydrogen Energy. – 2024. – Vol. 55. – P. 611–624.

9. Zhang Y., et al. Engineering BiVO4 and Oxygen Evolution Cocatalyst Interfaces with Rapid Hole Extraction for Photoelectrochemical Water Splitting // Acs Catalysis. – 2023. – Vol. 13(9). – P. 5938–5948.

10. Fang G., Liu Z., and Han C. Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts // Applied Surface Science. – 2020. – Vol. 515.

11. Shabdan Y., et al. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting // Nanomaterials. – 2020. – Vol. 10(9).

12. Yin D., et al. Dual modification of BiVO4 photoanode for synergistically boosting photoelectrochemical water splitting // J. of Colloid and Interface Science. – 2023. – Vol. 646. – P. 238–244.

13. Kyaw A., et al. Fabrication and characterization of heterostructure WO3/BiVO4/TiO2 photocatalyst for efficient performance of photoelectrochemical water splitting // Current Applied Physics. – 2025. – Vol. 72. – P. 87–92.

14. Wang L., et al. Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting // Materials Reports: Energy. – 2023. – Vol. 3(4).

15. Teh I., et al. Engineering high-performance BiVO4 homoand heterojunction Photoanodes for solar-driven Photoelectrochemical water splitting applications // Coordination Chemistry Reviews. – 2025. – Vol. 541. – P. 216773.

16. G.A. Kaptagay, B.M. Satanova, A.U. Abuova, M. Konuhova, Zh.Ye. Zakiyeva, U.Zh Tolegen, N.O. Koilyk, F.U. Abuova, Effect of rhodium doping for photocatalytic activity of barium titanate // Optical Materials: X. – 2025. – Vol. 25. – P. 100382.

17. COMSOL Multiphysics, Electrochemistry Module User’s Guide, version 5.4, Chapter 3: Electrochemistry Interfaces, COMSOL AB n.d.; 1998–2023, p. 60.

18. Idoko I.P., Ezeamii G.C., Idogho C., Peter E., Obot U.S., Iguoba V.A. Mathematical modeling and simulations using software like MATLAB, COMSOL and Python // Magna Scientia Advanced Research and Reviews. – 2024. – Vol. 12. – P. 62–95.

19. Dickinson E.J.F., Ekström H., Fontes E. COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review // Electrochem Commun. – 2014. – Vol. 40. – P. 71–74.

20. Bera S., Ghosh S., Shyamal S., Bhattacharya C., Basu R.N. Photocatalytic hydrogen generation using gold decorated BiFeO3 heterostructures as an efficient catalyst under visible light irradiation // Solar Energy Materials and Solar Cells. – 2019. – Vol. 194. – P. 195–206.

21. Yan L., Zhao W., Liu Z. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting // Dalton Transactions. – 2016. – Vol. 45. – P. 11346–11352.

22. Kim K., Moon J.H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential // ACS Appl Mater Interfaces. – 2018. – Vol. 10. – P. 34238–34244.

23. Bai S., Jia S., Zhao Y., Feng Y., Luo R., Li D., et al. NiFePB-modified ZnO/BiVO4 photoanode for PEC water oxidation // Dalton Transactions. – 2023. – Vol. 52. – P. 5760–5770.

24. Pihosh Y., Turkevych I., Mawatari K., Uemura J., Kazoe Y., Kosar S., et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency // Sci. Rep. – 2015. – Vol. 5. – P. 11141.

25. Yin X., Yang X., Qiu W., Wang K., Li W., Liu Y., et al. Boosting the photoelectrochemical performance of BiVO4 photoanodes by modulating bulk and interfacial charge transfer // ACS Appl. Electron Mater. – 2021. – Vol. 3. – P. 1896–1903.

26. Kim T.W., Choi K-S.. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting // Science (1979). – 2014. – Vol. 343. – P. 990– 994.

27. Yang J-S., Wu J-J.. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting // Nano Energy. – 2017. – Vol. 32. – P. 232–240.

28. Tolod K.R., Hernández S., Russo N. Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges // Catalysts. – 2017. – Vol. 7. – P. 13.

29. Wu H., Zhang L., Qu S., Du A., Tang J., Ng Y.H. Polaronmediated transport in BiVO4 photoanodes for solar water oxidation // ACS Energy Lett. – 2023. – Vol. 8. – P. 2177– 2184.

30. Vilanova A., Dias P., Lopes T., Mendes A. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges // Chem. Soc. Rev. – 2024. – Vol. 53. – P. 2388–2434.

31. Diaby M., Alimi A., Bardaoui A., Santos D.M.F., Chtourou R., Ben Assaker I. Correlation between the experimental and theoretical photoelectrochemical response of a WO3 electrode for efficient water splitting through the implementation of an artificial neural network // Sustainability. – 2023. – Vol. 15. – P. 11751.

32. Huang H., Obata K., Kishimoto F., Takanabe K. Numerical modeling investigations of the impact of a thin p-type cocatalyst modifier on an n-type photon absorber for unbiased overall solar water splitting // Mater. Adv. – 2022. – Vol. 3. – P. 9009–9018.

33. Njoka F.N., Ahmed M.A., Ookawara S. Design of a novel photoelectrochemical reactor for hydrogen production // Energy and Sustainability VII. – 2017. – Vol. 224. – P. 349.

34. Haussener S., Hu S., Xiang C., Weber A.Z., Lewis N.S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical watersplitting systems // Energy Environ. Sci. – 2013. – Vol. 6. – P. 3605–3618.

35. Chen Y. Numerical Simulation of Performance and SolarTo-Fuel Conversion Efficiency for Photoelectrochemical Devices // California Institute of Technology. – 2021.

36. Cendula P., Schumacher J.O. Spectroscopic modeling of photoelectrochemical water splitting. COMSOL Conference, Munich, Germany, 12-14 October 2016, COMSOL Group. – 2016.

37. Haussener S., Xiang C., Spurgeon J.M., Ardo S., Lewis N.S., Weber A.Z. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems // Energy Environ. Sci. – 2012. – Vol. 5. – P. 9922–9935.

38. Dhalsamant K. Development, validation, and comparison of FE modeling and ANN model for mixed‐mode solar drying of potato cylinders // J. Food Sci. – 2021. – Vol. 86. – P. 3384–3402.

39. Yang W., Sun L., Tang J., Mo Z., Liu H., Du M., et al. Multiphase fluid dynamics and mass transport modeling in a porous electrode toward hydrogen evolution reaction // Ind. Eng. Chem. Res. – 2022. – Vol. 61. – P. 8323–8332.

40. Caspersen M., Kirkegaard J.B. Modelling electrolyte conductivity in a water electrolyzer cell // Int. J. Hydrogen Energy. – 2012. – Vol. 37. – P. 7436–7441.

41. Gilliam R.J, Graydon J.W, Kirk D.W, Thorpe S.J. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures // Int. J. Hydrogen Energy. – 2007. – Vol. 32. – P. 359– 364.

42. Alom M.S., Kananke-Gamage C.C.W., Ramezanipour F. Perovskite oxides as electrocatalysts for hydrogen evolution reaction // ACS Omega. – 2022. – Vol. 7. – P. 7444– 7451.

43. Rodríguez J., Amores E. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production // Processes. – 2020. – Vol. 8. – P. 1634.

44. Li W., Tian H., Ma L., Wang Y., Liu X., Gao X. Lowtemperature water electrolysis: fundamentals, progress, and new strategies // Mater. Adv. – 2022. – Vol. 3. – P. 5598–5644.

45. Lamy C., Millet P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions // J. Power Sources. – 2020. – Vol. 447. – P. 227350.

46. Lettenmeier P. Efficiency–electrolysis. Siemens Energy Global GmbH Co KG, München, Germany, White Paper 2021.

47. Doering C.R., Gibbon J.D. Applied analysis of the Navier-Stokes equations. Cambridge university press, 1995.

48. Chen W, Zhang L. Effects of interphase forces on multiphase flow and bubble distribution in continuous casting strands // Metallurgical and Materials Transactions B. – 2021. – Vol. 52. – P. 528–547.

49. Le Bideau D., Mandin P., Benbouzid M., Kim M., Sellier M., Ganci F., et al. Eulerian two-fluid model of alkaline water electrolysis for hydrogen production // Energies (Basel). – 2020. – Vol. 13. – P. 3394.

50. Enwald H., Peirano E., Almstedt A-E. Eulerian two-phase flow theory applied to fluidization // International Journal of Multiphase Flow. – 1996. – Vol. 22. – P. 21–66.

51. Romagnuolo L., Yang R., Frosina E., Rizzoni G., Andreozzi A., Senatore A. Physical modeling of evaporative emission control system in gasoline fueled automobiles: A review // Renewable and Sustainable Energy Reviews. – 2019. – Vol. 116. – P. 109462.

52. Ricke N.D., Murray A.T., Shepherd J.J., Welborn M.G., Fukushima T., Van Voorhis T., et al. Molecular-level insights into oxygen reduction catalysis by graphite-conjugated active sites // ACS Catal. – 2017. – Vol. 7. – P. 7680–7687.

53. Gerischer H. An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level // J. Phys. Chem. – 1985. – Vol. 89. – P. 4249–4251.

54. Allen B.W., Piantadosi C.A. Electrochemical activation of electrodes for amperometric detection of nitric oxide // Nitric Oxide. – 2003. – Vol. 8. – P. 243–252.

55. Rahimian M., Ghaffarinejad A., Arabi M. Water splitting by electrodepositing Ni–Co on graphite rod: Low-cost, durable, and binder-free electrocatalyst // Int. J. Hydrogen Energy. – 2024. – Vol. 81. – P. 852–864.

56. Lipka S.M., Cahen Jr G.L., Stoner G.E., Scribner Jr L.L, Gileadi E. Hydrogen and oxygen evolution on graphite fiber –epoxy matrix composite electrodes // Electrochim. Acta. – 1988. – Vol. 33. – P. 753–760.

57. Chhetri M., Sultan S., Rao C.N.R.. Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni (OH) 2/graphite electrode // Proceedings of the National Academy of Sciences. – 2017. – Vol. 114. – P. 8986–8990.

58. Ficca V.C.A., Santoro C., Placidi E., Arciprete F., Serov A., Atanassov P., et al. Exchange current density as an effective descriptor of poisoning of active sites in platinum group metal-free electrocatalysts for oxygen reduction reaction // ACS Catal. – 2023. – Vol. 13. – P. 2162–2175.

59. Danaee I., Noori S. Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode // Int. J. Hydrogen Energy. – 2011. – Vol. 36. – P. 12102–12111.

60. Sadrehaghighi I. Mesh Sensitivity & Mesh Independence Study. CFD Open Series: Annapolis, MD, USA. – 2021. – P. 56.

61. Lee M., Park G., Park C., Kim C. Improvement of grid independence test for computational fluid dynamics model of building based on grid resolution // Advances in Civil Engineering. – 2020, – Vol. 2020. – P. 8827936.


Review

For citations:


Bakranov N., Seitov B., Bakranova D., Fattahi E., Coruh A., Niaei A. PHOTOELECTROCHEMICAL WATER SPLITTING SIMULATION: TOWARD A COMPREHENSIVE MODELING FRAMEWORK. NNC RK Bulletin. 2025;(4):127-141. https://doi.org/10.52676/1729-7885-2025-4-127-141

Views: 191

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)