СУДЫҢ ФОТОЭЛЕКТРОХИМИЯЛЫҚ ЫДЫРАУЫН МОДЕЛЬДЕУ: КЕШЕНДІ МОДЕЛЬДЕУ ЖҮЙЕСІН ҚҰРУ ЖОЛЫНДА
https://doi.org/10.52676/1729-7885-2025-4-127-141
Аңдатпа
Бұл зерттеуде суды ыдырататын фотоэлектрохимиялық (ФЭХ) жүйелерді талдау және оңтайландыру үшін физикалық модельдеу мен деректерге негізделген тәсілдерді біріктіретін кешенді есептеу платформасы ұсынылған. COMSOL Multiphysics 6.1 және MATLAB көмегімен сызықтық вольтамперометрия (СВА) және электрохимиялық импеданс спектроскопиясы (ЭИС) сияқты негізгі электрохимиялық процестер модельденеді. COMSOL мультифизикалық ортасы электролит параметрлерін, жартылай өткізгіштердің фотофизикалық қасиеттерін және токтың таралуын тікелей есепке алуға мүмкіндік береді, ал MATLAB жасанды нейрондық желілерді (ЖНЖ) пайдалана отырып, реттелетін импеданс өзгерісін модельдеуді және СВА болжамды талдауын реттеуге мүмкіндік береді. Есептеу гидродинамикасының (ЕГД), машиналық оқытудың және эксперименттік тексерудің үйлесімі арқылы ұсынылған әдістеме ZnO/BiVO4 сияқты жартылай өткізгіш электродтардағы жарықтың әсерінен сутектің пайда болу процесін терең түсінуге мүмкіндік береді. Модельдеу нәтижелерін салыстырмалы талдау COMSOL мен MATLAB үйлесімді нәтижелерді қамтамасыз ететінін көрсетті, COMSOL, әсіресе физикалық және химиялық жағдайлардың айнымалылары әсер ететін жүйелер үшін тамаша икемділікті, дәлдікті және пайдаланудың қарапайымдылығын көрсетеді. Зерттеу екі фазалы ағынды модельдеуді, торлардың тәуелсіздігін тексеруді және газ көпіршіктерінің электролит өткізгіштігіне әсерін одан әрі қарастырады. Нәтижелер таза сутекті өндіру үшін тиімді масштабталатын электрохимиялық синтез жүйелерін (PEC) дамытуға ықпал етеді және гибридті модельдеу мен жасанды интеллект әдістерін жаңартылатын энергия көздерін зерттеуге болашақта біріктіруге негіз қалайды.
Авторлар туралы
Н. БакрановҚазақстан
Алматы
Б. Сейтов
Қазақстан
Түркістан
Д. Бакранова
Қазақстан
Қаскелең
Е. Фаттахи
Иран
Сакария
Табриз
А. Чорух
Түркия
Сакария
А. Ниаеи
Түркия
Сакария
Әдебиет тізімі
1. Hosseini S.E, Wahid M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 57. – Issue C. – P. 850–866. https://doi.org/10.1016/j.rser.2015.12.112
2. Ma P., Wang D. The principle of photoelectrochemical water splitting. Nanomaterials for Energy Conversion and Storage // World Scientific. – 2018. – Vol. 1. – P. 61.
3. Zhang H., Zhang B., Wang X., Zou L., You J., Lin S. Effective charge separation in photoelectrochemical water splitting: A review from advanced evaluation methods to materials design // Sustain Energy Fuels. – 2024.
4. Ager J.W. Photoelectrochemical approach for water splitting // Solar to Chemical Energy Conversion: Theory and Application. – 2016. – Vol. 249. – P. 60.
5. Feng S., et al. Using hollow dodecahedral NiCo-LDH with multi-active sites to modify BiVO4 photoanode facilitates the photoelectrochemical water splitting performance // Nano Research Energy. – 2024. – Vol. 3(3).
6. Mane P., et al. Recent trends and outlooks on engineering of BiVO4 photoanodes toward efficient photoelectrochemical water splitting and CO2 reduction: A comprehensive review // Int. J. of Hydrogen Energy. – 2022. – Vol. 47(94). – P. 39796–39828.
7. Sung H., et al. Dense/nanoporous bilayer BiVO4 photoanode with outstanding light-absorption efficiency for high-performance photoelectrochemical water splitting // J. of Photochemistry and Photobiology A-Chemistry. – 2024. – P. 449.
8. Fu L., Li Z, and Shang X. Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement // Int. J. of Hydrogen Energy. – 2024. – Vol. 55. – P. 611–624.
9. Zhang Y., et al. Engineering BiVO4 and Oxygen Evolution Cocatalyst Interfaces with Rapid Hole Extraction for Photoelectrochemical Water Splitting // Acs Catalysis. – 2023. – Vol. 13(9). – P. 5938–5948.
10. Fang G., Liu Z., and Han C. Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts // Applied Surface Science. – 2020. – Vol. 515.
11. Shabdan Y., et al. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting // Nanomaterials. – 2020. – Vol. 10(9).
12. Yin D., et al. Dual modification of BiVO4 photoanode for synergistically boosting photoelectrochemical water splitting // J. of Colloid and Interface Science. – 2023. – Vol. 646. – P. 238–244.
13. Kyaw A., et al. Fabrication and characterization of heterostructure WO3/BiVO4/TiO2 photocatalyst for efficient performance of photoelectrochemical water splitting // Current Applied Physics. – 2025. – Vol. 72. – P. 87–92.
14. Wang L., et al. Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting // Materials Reports: Energy. – 2023. – Vol. 3(4).
15. Teh I., et al. Engineering high-performance BiVO4 homoand heterojunction Photoanodes for solar-driven Photoelectrochemical water splitting applications // Coordination Chemistry Reviews. – 2025. – Vol. 541. – P. 216773.
16. G.A. Kaptagay, B.M. Satanova, A.U. Abuova, M. Konuhova, Zh.Ye. Zakiyeva, U.Zh Tolegen, N.O. Koilyk, F.U. Abuova, Effect of rhodium doping for photocatalytic activity of barium titanate // Optical Materials: X. – 2025. – Vol. 25. – P. 100382.
17. COMSOL Multiphysics, Electrochemistry Module User’s Guide, version 5.4, Chapter 3: Electrochemistry Interfaces, COMSOL AB n.d.; 1998–2023, p. 60.
18. Idoko I.P., Ezeamii G.C., Idogho C., Peter E., Obot U.S., Iguoba V.A. Mathematical modeling and simulations using software like MATLAB, COMSOL and Python // Magna Scientia Advanced Research and Reviews. – 2024. – Vol. 12. – P. 62–95.
19. Dickinson E.J.F., Ekström H., Fontes E. COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review // Electrochem Commun. – 2014. – Vol. 40. – P. 71–74.
20. Bera S., Ghosh S., Shyamal S., Bhattacharya C., Basu R.N. Photocatalytic hydrogen generation using gold decorated BiFeO3 heterostructures as an efficient catalyst under visible light irradiation // Solar Energy Materials and Solar Cells. – 2019. – Vol. 194. – P. 195–206.
21. Yan L., Zhao W., Liu Z. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting // Dalton Transactions. – 2016. – Vol. 45. – P. 11346–11352.
22. Kim K., Moon J.H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential // ACS Appl Mater Interfaces. – 2018. – Vol. 10. – P. 34238–34244.
23. Bai S., Jia S., Zhao Y., Feng Y., Luo R., Li D., et al. NiFePB-modified ZnO/BiVO4 photoanode for PEC water oxidation // Dalton Transactions. – 2023. – Vol. 52. – P. 5760–5770.
24. Pihosh Y., Turkevych I., Mawatari K., Uemura J., Kazoe Y., Kosar S., et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency // Sci. Rep. – 2015. – Vol. 5. – P. 11141.
25. Yin X., Yang X., Qiu W., Wang K., Li W., Liu Y., et al. Boosting the photoelectrochemical performance of BiVO4 photoanodes by modulating bulk and interfacial charge transfer // ACS Appl. Electron Mater. – 2021. – Vol. 3. – P. 1896–1903.
26. Kim T.W., Choi K-S.. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting // Science (1979). – 2014. – Vol. 343. – P. 990– 994.
27. Yang J-S., Wu J-J.. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting // Nano Energy. – 2017. – Vol. 32. – P. 232–240.
28. Tolod K.R., Hernández S., Russo N. Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges // Catalysts. – 2017. – Vol. 7. – P. 13.
29. Wu H., Zhang L., Qu S., Du A., Tang J., Ng Y.H. Polaronmediated transport in BiVO4 photoanodes for solar water oxidation // ACS Energy Lett. – 2023. – Vol. 8. – P. 2177– 2184.
30. Vilanova A., Dias P., Lopes T., Mendes A. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges // Chem. Soc. Rev. – 2024. – Vol. 53. – P. 2388–2434.
31. Diaby M., Alimi A., Bardaoui A., Santos D.M.F., Chtourou R., Ben Assaker I. Correlation between the experimental and theoretical photoelectrochemical response of a WO3 electrode for efficient water splitting through the implementation of an artificial neural network // Sustainability. – 2023. – Vol. 15. – P. 11751.
32. Huang H., Obata K., Kishimoto F., Takanabe K. Numerical modeling investigations of the impact of a thin p-type cocatalyst modifier on an n-type photon absorber for unbiased overall solar water splitting // Mater. Adv. – 2022. – Vol. 3. – P. 9009–9018.
33. Njoka F.N., Ahmed M.A., Ookawara S. Design of a novel photoelectrochemical reactor for hydrogen production // Energy and Sustainability VII. – 2017. – Vol. 224. – P. 349.
34. Haussener S., Hu S., Xiang C., Weber A.Z., Lewis N.S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical watersplitting systems // Energy Environ. Sci. – 2013. – Vol. 6. – P. 3605–3618.
35. Chen Y. Numerical Simulation of Performance and SolarTo-Fuel Conversion Efficiency for Photoelectrochemical Devices // California Institute of Technology. – 2021.
36. Cendula P., Schumacher J.O. Spectroscopic modeling of photoelectrochemical water splitting. COMSOL Conference, Munich, Germany, 12-14 October 2016, COMSOL Group. – 2016.
37. Haussener S., Xiang C., Spurgeon J.M., Ardo S., Lewis N.S., Weber A.Z. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems // Energy Environ. Sci. – 2012. – Vol. 5. – P. 9922–9935.
38. Dhalsamant K. Development, validation, and comparison of FE modeling and ANN model for mixed‐mode solar drying of potato cylinders // J. Food Sci. – 2021. – Vol. 86. – P. 3384–3402.
39. Yang W., Sun L., Tang J., Mo Z., Liu H., Du M., et al. Multiphase fluid dynamics and mass transport modeling in a porous electrode toward hydrogen evolution reaction // Ind. Eng. Chem. Res. – 2022. – Vol. 61. – P. 8323–8332.
40. Caspersen M., Kirkegaard J.B. Modelling electrolyte conductivity in a water electrolyzer cell // Int. J. Hydrogen Energy. – 2012. – Vol. 37. – P. 7436–7441.
41. Gilliam R.J, Graydon J.W, Kirk D.W, Thorpe S.J. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures // Int. J. Hydrogen Energy. – 2007. – Vol. 32. – P. 359– 364.
42. Alom M.S., Kananke-Gamage C.C.W., Ramezanipour F. Perovskite oxides as electrocatalysts for hydrogen evolution reaction // ACS Omega. – 2022. – Vol. 7. – P. 7444– 7451.
43. Rodríguez J., Amores E. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production // Processes. – 2020. – Vol. 8. – P. 1634.
44. Li W., Tian H., Ma L., Wang Y., Liu X., Gao X. Lowtemperature water electrolysis: fundamentals, progress, and new strategies // Mater. Adv. – 2022. – Vol. 3. – P. 5598–5644.
45. Lamy C., Millet P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions // J. Power Sources. – 2020. – Vol. 447. – P. 227350.
46. Lettenmeier P. Efficiency–electrolysis. Siemens Energy Global GmbH Co KG, München, Germany, White Paper 2021.
47. Doering C.R., Gibbon J.D. Applied analysis of the Navier-Stokes equations. Cambridge university press, 1995.
48. Chen W, Zhang L. Effects of interphase forces on multiphase flow and bubble distribution in continuous casting strands // Metallurgical and Materials Transactions B. – 2021. – Vol. 52. – P. 528–547.
49. Le Bideau D., Mandin P., Benbouzid M., Kim M., Sellier M., Ganci F., et al. Eulerian two-fluid model of alkaline water electrolysis for hydrogen production // Energies (Basel). – 2020. – Vol. 13. – P. 3394.
50. Enwald H., Peirano E., Almstedt A-E. Eulerian two-phase flow theory applied to fluidization // International Journal of Multiphase Flow. – 1996. – Vol. 22. – P. 21–66.
51. Romagnuolo L., Yang R., Frosina E., Rizzoni G., Andreozzi A., Senatore A. Physical modeling of evaporative emission control system in gasoline fueled automobiles: A review // Renewable and Sustainable Energy Reviews. – 2019. – Vol. 116. – P. 109462.
52. Ricke N.D., Murray A.T., Shepherd J.J., Welborn M.G., Fukushima T., Van Voorhis T., et al. Molecular-level insights into oxygen reduction catalysis by graphite-conjugated active sites // ACS Catal. – 2017. – Vol. 7. – P. 7680–7687.
53. Gerischer H. An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level // J. Phys. Chem. – 1985. – Vol. 89. – P. 4249–4251.
54. Allen B.W., Piantadosi C.A. Electrochemical activation of electrodes for amperometric detection of nitric oxide // Nitric Oxide. – 2003. – Vol. 8. – P. 243–252.
55. Rahimian M., Ghaffarinejad A., Arabi M. Water splitting by electrodepositing Ni–Co on graphite rod: Low-cost, durable, and binder-free electrocatalyst // Int. J. Hydrogen Energy. – 2024. – Vol. 81. – P. 852–864.
56. Lipka S.M., Cahen Jr G.L., Stoner G.E., Scribner Jr L.L, Gileadi E. Hydrogen and oxygen evolution on graphite fiber –epoxy matrix composite electrodes // Electrochim. Acta. – 1988. – Vol. 33. – P. 753–760.
57. Chhetri M., Sultan S., Rao C.N.R.. Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni (OH) 2/graphite electrode // Proceedings of the National Academy of Sciences. – 2017. – Vol. 114. – P. 8986–8990.
58. Ficca V.C.A., Santoro C., Placidi E., Arciprete F., Serov A., Atanassov P., et al. Exchange current density as an effective descriptor of poisoning of active sites in platinum group metal-free electrocatalysts for oxygen reduction reaction // ACS Catal. – 2023. – Vol. 13. – P. 2162–2175.
59. Danaee I., Noori S. Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode // Int. J. Hydrogen Energy. – 2011. – Vol. 36. – P. 12102–12111.
60. Sadrehaghighi I. Mesh Sensitivity & Mesh Independence Study. CFD Open Series: Annapolis, MD, USA. – 2021. – P. 56.
61. Lee M., Park G., Park C., Kim C. Improvement of grid independence test for computational fluid dynamics model of building based on grid resolution // Advances in Civil Engineering. – 2020, – Vol. 2020. – P. 8827936.
Рецензия
Дәйектеу үшін:
Бакранов Н., Сейтов Б., Бакранова Д., Фаттахи Е., Чорух А., Ниаеи А. СУДЫҢ ФОТОЭЛЕКТРОХИМИЯЛЫҚ ЫДЫРАУЫН МОДЕЛЬДЕУ: КЕШЕНДІ МОДЕЛЬДЕУ ЖҮЙЕСІН ҚҰРУ ЖОЛЫНДА. ҚР ҰЯО жаршысы. 2025;(4):127-141. https://doi.org/10.52676/1729-7885-2025-4-127-141
For citation:
Bakranov N., Seitov B., Bakranova D., Fattahi E., Coruh A., Niaei A. PHOTOELECTROCHEMICAL WATER SPLITTING SIMULATION: TOWARD A COMPREHENSIVE MODELING FRAMEWORK. NNC RK Bulletin. 2025;(4):127-141. https://doi.org/10.52676/1729-7885-2025-4-127-141
JATS XML










