Preview

NNC RK Bulletin

Advanced search

OPTIMIZATION OF SINTERING CONDITIONS OF LaNi5-Al SYSTEM FOR HYDROGEN STORAGE SYSTEMS BY THERMODYNAMIC MODELLING

https://doi.org/10.52676/1729-7885-2025-3-211-218

Abstract

This work presents the results of phase equilibrium modeling in the La-Ni-Al system using the Thermo-Calc software. The aim of the calculations was to optimize the composition and sintering parameters of aluminum-alloyed materials to preserve the CaCu5-type structure and ensure stable hydride-forming properties. Phase diagram sections were constructed for temperatures of 750–950 ℃ at aluminum concentrations ranging from 5 to 20 wt.%, and corresponding thermodynamic parameters such as Gibbs free energy and enthalpy were calculated. The results showed that at 5–10 wt.% Al, the LaNi5 phase field is preserved with a minimal amount of secondary phases, while at 15–20 wt.% Al, the formation of NiAl (BCC_B2) intermetallics and rare-earth compounds such as La2Ni7 occurs, along with the appearance of a liquid phase. The Scheil solidification calculation revealed that when the critical aluminum threshold of 10 wt.% is exceeded, aluminum redistributes into the liquid phase, leading to the breakdown of the original structure and degradation of the material’s hydrogen storage properties. The obtained data enable the determination of optimal synthesis and alloying conditions for developing efficient next-generation metal hydride hydrogen storage systems.

About the Authors

A. Zh. Miniyazov
RSE “National Nuclear Center of the Republic of Kazakhstan”; “Center for Technological Competence in Hydrogen Energy” branch IAE RSE NNC RK
Kazakhstan

Kurchatov



M. K. Skakov
RSE “National Nuclear Center of the Republic of Kazakhstan”
Kazakhstan

Kurchatov



N. M. Mukhamedova
“Center for Technological Competence in Hydrogen Energy” branch IAE RSE NNC RK
Kazakhstan

Kurchatov



Zh. N. Ospanova
“Center for Technological Competence in Hydrogen Energy” branch IAE RSE NNC RK
Kazakhstan

Kurchatov



B. E. Bekmagambetova
“Center for Technological Competence in Hydrogen Energy” branch IAE RSE NNC RK
Kazakhstan

Kurchatov



References

1. Umirzakov S. A., Baymuratov A. S. Perspektivy razvitiya vodorodnoy energetiki v Respublike Kazakhstan // Vestnik NIYaU MIFI. Kazakhstanskoe izdanie. – 2021. – No. 3(11). – P. 57–63. (In Russ.)

2. Sarsembaev A. E., Mukasheva A. K. Razvitie vozobnovlyaemykh istochnikov energii kak prioritetnoe napravlenie energeticheskoy politiki Kazakhstana // Izvestiya KazNITU. Seriya energetika I energosberezhenie. – 2022. – No. 1(25). – P. 29–35. (In Russ.)

3. Bukharbaev A. Zh., Iskakov N. B. Potentsial vodorodnoy energetiki v Respublike Kazakhstan: ekologicheskie i ekonomicheskie aspekty // Izvestiya NAN RK. Seriya energetika. – 2022. – No. 4. – P. 35–42. (In Russ.)

4. International Renewable Energy Agency (IRENA). Hydrogen: A Renewable Energy Perspective. – Abu Dhabi: IRENA, 2019. – 52 p.

5. Zhantasov M. Zh., Abdrakhmanov K. A. Energeticheskaya strategiya Respubliki Kazakhstan: perekhod k “zelenoy” ekonomike // Vestnik KazNTU im. K. I. Satpaeva. – 2021. – No. 2(148). – P. 45–52. (In Russ)

6. Tulegenov B. T., Ashimov A. S. Razvitie al'ternativnoy energetiki v Respublike Kazakhstan // Izvestiya NAN RK. Seriya energetika. – 2020. – No. 3. – P. 21–28. (In Russ.)

7. Kaldygulova G. K., Abdullina A. M. Potentsial vozobnovlyaemykh istochnikov energii v Kazakhstane i puti ego realizatsii // Energetika Kazakhstana. – 2019. – No. 4. – P. 14–20. (In Russ.)

8. Aytmuratov E. M., Akhmetov B. M. Analiz energeticheskogo balansa Kazakhstana v usloviyakh modernizatsii toplivno-energeticheskogo kompleksa // Vestnik Karagandinskogo universiteta. Seriya: Tekhnicheskaya fizika. – 2022. – No. 1(105). – P. 33–40. (In Russ.)

9. Ministerstvo energetiki Respubliki Kazakhstan. Natsional'nyy doklad o sostoyanii i perspektivakh razvitiya energetiki v RK. – Astana: ME RK, 2023. – 84 p.

10. Baklanov, V., Zhanbolatova, G., Skakov, M., Miniyazov, A., Sokolov, I., Tulenbergenov, T., Kozhakhmetov, Y., Bukina, O., & Orazgaliev, N. Study of the temperature dependence of a carbidized layer formation on the tungsten surface under plasma irradiation // Materials Research Express. – 2022. – Vol. 9(1), 016403. https://doi.org/10.1088/2053-1591/ac4626

11. Mukhamedova N. M. et al. Evolution of Phase Transformations in the Mg-Ni-Ce System After Mechanical Synthesis and Spark Plasma Sintering // Materials. – 2025. – Vol. 18. – No. 9. – P. 2131. https://doi.org/10.3390/ma18092131

12. Skakov, M., Kozhakhmetov, Y., Mukhamedova, N., Miniyazov, A., Sokolov, I., Urkunbay, A., Zhanbolatova, G., Tulenbergenov, T. Effect of a High-Temperature Treatment on Structural-Phase State and Mechanical Properties of IMC of the Ti-25Al-25Nb at.% System // Materials. – 2022. – Vol. 15. – No. 16. – P. 5560. https://doi.org/10.3390/ma15165560

13. Todorova S., Abrashev B., Rangelova V., Vassileva E., Spassov T. Effect of low Al content on the electrode performance of LaNi5₋xAlx hydrogen storage alloys // J. Chem. Technol. Metallurgy. – 2023. – Vol. 58. – No. 1. – P. 200–207.

14. Briki C., et al. Experimental investigation of microstructures and hydrogen properties in Al substituted LaNi5 alloys // Int. J. Hydrogen Energy. – 2023.

15. Liu Y., et al. Optimization of LaNi5 hydrogen storage properties by mechanical alloying and Al substitution // Int. J. Hydrogen Energy. – 2024. – Vol. 53. – P. 394–402.

16. Sleiman S., et al. Mechanism of hydrogen absorption by LaNi5 // Materials Today Energy. – 2024. – Vol. 5. – Art. 021.

17. Sato T., et al. Hydrogen absorption reactions of LaNi5 under various pressures // Molecules. – 2023. – Vol. 28(3). – Art. 1256.

18. Liao X., et al. CALPHAD analysis of La–Ni–Al system and Al solubility in LaNi5 // Materials Sci. – 2020.

19. Palumbo M., Dematteis E., Fenocchio L., Cacciamani G., Baricco M. Advances in CALPHAD methodology for modeling hydrides: a comprehensive review // CALPHAD. – 2024.

20. Hannappel P., et al. Predicting hydrogen-storage properties of multicomponent metal hydrides: modeling of pressure capacity hysteresis and slope // Comput. Mater. Sci. – 2025.

21. Hannappel P., et al. Advanced thermodynamic modeling of metal hydrides within CALPHAD framework // CALPHAD. – 2025.

22. Nemukula E., Mtshali C. B., Nemangwele F. Metal hydrides for sustainable hydrogen storage: a review // Int. J. Energy Res. – 2025. – Art. 6300225.

23. Yartys V. A., et al. Effects of Al partial substitution for Ni on properties of LaNi5₋xAlx alloys // Int. J. Hydrogen Energy. – 2020.

24. Liu C., et al. Effect of Al and Mn substitution on hydrogen activation and surface stability of LaNi5 // Int. J. Hydrogen Energy. – 2024.

25. Singh A., Maiya M. P., Murthy S. S. Heat exchanger design in solid state hydrogen storage devices (LaNi4.7Al0.3 etc.) // Int. J. Hydrogen Energy. – 2019.

26. Todorova S., Abrashev B. Influence of very low Al substitution (x<0.1) on hydrogen capacity and cycling life of LaNi5−xAlx electrodes // J. Chem. Technol. Metall. – 2023. – Vol. 58. – No. 1. – P. 200–207.

27. Liao X., Wang X., et al. Effects of Al partial substitution for Ni on structure and volume expansion of LaNi5 alloys // Trans. Nonferrous Met. Soc. China. – 2020. – Vol. 30, S1. – P. S967–S971.

28. Kunselman C., Bocklund B., Otis R., Arroyave R. Analytical gradient based optimization of CALPHAD model parameters // arXiv. – 2025.

29. Zhang D., Prasad A., Bermingham M. J., et al. Grain refinement in LaNi5-based alloys via additive manufacturing and Al doping // Acta Materialia. – 2020.

30. Dematteis E., Palumbo M., et al. CALPHAD modeling of metal hydrogen systems: a review // CALPHAD. – 2014.

31. Delsante S., Parodi N., Novakovic R., Borzone G. Phase relations of the Sm–Ni–Al ternary system at 800 °C // J. Phase Equilib. Diffus. – 2024.

32. Sleiman, S.; Shahgaldi, S.; Huot, J. Investigation of the First Hydrogenation of LaNi5 // Reactions. – 2024. – Vol. 5.– P 419-428. https://doi.org/10.3390/reactions5030021

33. Chen B., Chen Y., Ren H., Hu R., Zhang J. Effect of Al substitution on the microstructure and hydrogen storage properties of LaNi5-based alloys // International Journal of Hydrogen Energy. – 2021. – Vol. 46, Issue 62. – P. 31786–31796. https://doi.org/10.1016/j.ijhydene.2021.07.171

34. Liu Y., Chabane D., El-Kedim O., Bouzabata B., Liu Z., Zhang X., Liu X. Optimization of LaNi5 hydrogen storage properties by the combination of mechanical alloying and element substitution // International Journal of Hydrogen Energy. – 2024. – Vol. 53. – P. 394–402. – https://doi.org/10.1016/j.ijhydene.2023.12.038

35. Cao D.L., Yang X.G., Zhu Y.J., Zhang M. Effects of Al partial substitution for Ni on properties of LaNi5–xAlx // Transactions of Nonferrous Metals Society of China.

36. Ye R., Wang J., Liu S., Zhang J. Effects of Al and Mn substitution on the hydrogen storage performance of LaNi5 alloys // International Journal of Hydrogen Energy. – 2021. – Vol. 46, Issue 4. – P. 3767–3777. https://doi.org/10.1016/j.ijhydene.2020.10.099

37. Available at: https://materialsproject.org (accessed: July 28, 2025)

38. Xie, L., Cheng, N., Yang, X., Lin, W., Xie, L., Li, X., Zheng, J. Pd-modified LaNi5 nanoparticles for efficient hydrogen storage in a carbazole type liquid organic hydrogen carrier. – 2022.

39. Patel R., Patel K., Upadhyay R.V., Mehta R.V. Effect of cooling rate on structural and hydrogen storage properties of LaNi5–xAlx intermetallics // Materials Today: Proceedings. – 2019. – Vol. 18. – P. 5374–5379. URL: https://www.sciencedirect.com/science/article/pii/S223878541930465X

40. Faghihi D., Ziaei-Rad S., Shodja H.M. A coupled thermoelastic–plastic damage model for ductile failure // Computational Mechanics. – 2015. –Vol. 56, No. 4. – P. 613–632. https://doi.org/10.1007/s00466-015-1243-1

41. Zhou W., Zhang Y., Wang D., Sun Q., Li W., Chen Y. Hydrogen storage performances and mechanisms of LaNi5 alloy with hollow structure // Journal of Materials Science & Technology. – 2023. – Vol. 142. – P. 125–134. https://doi.org/10.1016/j.jmst.2022.03.038


Supplementary files

Review

For citations:


Miniyazov A.Zh., Skakov M.K., Mukhamedova N.M., Ospanova Zh.N., Bekmagambetova B.E. OPTIMIZATION OF SINTERING CONDITIONS OF LaNi5-Al SYSTEM FOR HYDROGEN STORAGE SYSTEMS BY THERMODYNAMIC MODELLING. NNC RK Bulletin. 2025;(3):211-218. (In Russ.) https://doi.org/10.52676/1729-7885-2025-3-211-218

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)