Preview

NNC RK Bulletin

Advanced search

PLASMA-CHEMICAL SYNTHESIS OF CARBON FROM METHANE IN A MICROWAVE DISCHARGE

https://doi.org/10.52676/1729-7885-2025-4-150-158

Abstract

This study presents a comprehensive investigation of carbon materials synthesized via methane pyrolysis in a microwave plasma discharge under atmospheric pressure. Particular attention is paid to the influence of microwave power on the morphological, phase, and textural characteristics of the resulting carbon. Scanning electron microscopy (SEM) revealed that increasing the discharge power from 0.6 to 1.4 kW leads to a reduction in average particle size (from ~20.2 to ~10.4 μm) and the formation of more dispersed structures. X-ray diffraction (XRD) analysis showed a transition from a turbostratic, amorphous phase to a more ordered, graphite-like structure with increasing process temperature. Nitrogen adsorption analysis using the BET and BJH methods confirmed the mesoporous nature of the materials, with the highest specific surface area and pore volume observed at the lowest plasma power (628 m2/g and 5.04 cm3/g, respectively). These findings demonstrate that microwave discharge power is a key parameter for tailoring the structure and functionality of carbon materials, making them promising candidates for applications in catalysis, adsorption, and energy storage.

About the Authors

M. K. Skakov
RSE “National Nuclear Center of the Republic of Kazakhstan”
Казахстан

Kurchatov



A. Zh. Miniyazov
Branch “Institute of Atomic Energy” RSE NNC RK
Казахстан

Kurchatov



I. A. Sokolov
Branch “Institute of Atomic Energy” RSE NNC RK
Казахстан

Kurchatov



T. R. Tulenbergenov
RSE “National Nuclear Center of the Republic of Kazakhstan”
Казахстан

Kurchatov



A. A. Agatanova
Branch “Institute of Atomic Energy” RSE NNC RK; Shakarim University
Казахстан

Kurchatov

Semey



А. A. Sabyrtaeva
Branch “Institute of Atomic Energy” RSE NNC RK
Казахстан

Kurchatov



B. E. Bekmagambetova
Branch “Institute of Atomic Energy” RSE NNC RK
Казахстан

Kurchatov



References

1. IEA. Global Hydrogen Review 2024 / IEA. – Paris: IEA, 2024. – Режим доступа: https://www.iea.org/reports/global-hydrogen-review-2024. – Загл. с экрана. – Licence: CC BY 4.0.

2. Стратегия достижения углеродной нейтральности Республики Казахстан до 2060 года. – Режим доступа: https://adilet.zan.kz/rus/docs/U2300000121. – Загл. с экрана.

3. IEA. Hydrogen / IEA. – Paris: IEA, 2023. – Режим доступа: https://www.iea.org/reports/hydrogen-2156. – Загл. с экрана. – Licence: CC BY 4.0.

4. Fincke, J. R., Anderson, R. P., Hyde, T. et al. Plasma thermal conversion of methane to acetylene // Plasma Chemistry and Plasma Processing. – 2002. – Vol. 22, No. 1. – P. 107–138. https://doi.org/10.1023/A:1012944615974

5. Sánchez-Bastardo, N., Schlögl, R., Ruland, H. Methane pyrolysis for zero-emission hydrogen production: a potential bridge // Industrial & Engineering Chemistry Research. – 2021. – Vol. 60, No. 32. – P. 11855–11881. – https://doi.org/10.1021/acs.iecr.1c01679

6. Technology from fossil fuels to a renewable and sustainable hydrogen economy // Industrial & Engineering Chemistry Research. – 2021. – Vol. 60, No. 48. – P. 17795–17796. https://doi.org/10.1021/acs.iecr.1c04435

7. Cheon, S., Byun, M., Lim, D., Lee, H., Lim, H. Parametric study for thermal and catalytic methane pyrolysis for hydrogen production: techno-economic and scenario analysis // Energies. – 2021. – Vol. 14, No. 19. – Article 6102. https://doi.org/10.3390/en14196102

8. Dagle, R., Dagle, V., Bearden, M., Holladay, J., Krause, T., Ahmed, S. R&D opportunities for development of natural gas conversion technologies for co-production of hydrogen and value-added solid carbon products: technical report PNNL-26726 / Pacific Northwest National Laboratory. – Richland, WA, 2017. – Режим доступа: https://www.pnnl.gov/main/publications/external/technical_reports/pnnl-26726.pdf. – Загл. с экрана.

9. Kim, M. H., Lee, E. K., Jun, J. H., Kong, S. J., Han, G. Y., Lee, B. K., Lee, T., Yoon, K. J. Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study // International Journal of Hydrogen Energy. – 2004. – Vol. 29, No. 2. – P. 187–193. https://doi.org/10.1016/S0360-3199(03)00111-3

10. Muradov, N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels // International Journal of Hydrogen Energy. – 2001. – Vol. 26, No. 11. – P. 1165–1175. https://doi.org/10.1016/S0360-3199(01)00073-8

11. Lee, E. K., Lee, S. Y., Han, G. Y., Lee, B. K., Lee, T., Jun, J. H., Yoon, K. J. Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production // Carbon. – 2004. – Vol. 42, No. 13. – P. 2641–2648. https://doi.org/10.1016/j.carbon.2004.06.003

12. Prabowo, J., Lai, L., Chivers, B., Burke, D., Dinh, A. H., Ye, L., Wang, Y., Wei, L., Chen, Y. Solid carbon coproducts from hydrogen production by methane pyrolysis: current understandings and recent progress // Carbon. – 2024. – Vol. 216. – Article 118507. https://doi.org/10.1016/j.carbon.2023.118507

13. Skakov, M., Miniyazov, A., Tulenbergenov, T., Sokolov, I., Zhanbolatova, G., Kaiyrbekova, A., Agatanova, A. Hydrogen production by methane pyrolysis in the microwave discharge plasma // AIMS Energy. – 2024. – Vol. 12, No. 3. – P. 548–560. https://doi.org/10.3934/energy.2024026

14. Skakov, M. K., Tulenbergenov, T. R., Sokolov, I. A., Miniyazov, A. Zh., Agatanova, A. A. Experimental study of methane conversion in a microwave discharge // NNC RK Bulletin. – 2024. – No. 3. – P. 123–128. – (In Russ.). https://doi.org/10.52676/1729-7885-2024-3-123-128

15. International Organization for Standardization. ISO 9277:2022. Determination of the specific surface area of solids by gas adsorption – BET method: 3rd ed. – Geneva : ISO, 2022.

16. International Organization for Standardization. ISO 15901-1:2016. Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 1: mercury porosimetry: 2nd ed. – Geneva : ISO, 2016.

17. Dresselhaus, M. S., Dresselhaus, G. Intercalation compounds of graphite // Advances in Physics. – 2002. – Vol. 51, No. 1. – P. 1–186. https://doi.org/10.1080/00018730110113644

18. Dahn, J. R. Structure and electrochemistry of carbon electrodes for rechargeable lithium batteries // Science. – 1995. – Vol. 270, No. 5236. – P. 590–593.

19. Ferrari, A. C., Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon // Physical Review B. – 2000. – Vol. 61, No. 20. – P. 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095.

20. Franklin, R. E. The structure of graphitic carbon // Acta Crystallographica. – 1951. – Vol. 4, No. 3. – P. 253–261. https://doi.org/10.1107/S0365110X51000842

21. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure and Applied Chemistry. – 2015. – Vol. 87, No. 9–10. https://doi.org/10.1515/pac-20141117


Review

For citations:


Skakov M.K., Miniyazov A.Zh., Sokolov I.A., Tulenbergenov T.R., Agatanova A.A., Sabyrtaeva А.A., Bekmagambetova B.E. PLASMA-CHEMICAL SYNTHESIS OF CARBON FROM METHANE IN A MICROWAVE DISCHARGE. NNC RK Bulletin. 2025;(4):150-158. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-4-150-158

Views: 141

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)