МЕТОДЫ СИНТЕЗА И ПРИМЕНЕНИЕ СЛОИСТЫХ ДВОЙНЫХ ГИДРОКСИДОВ – КРАТКИЙ ОБЗОР
Аннотация
Слоистые двойные гидроксиды (СДГ), которые представляют собой один из типов слоистых материалов, являются перспективными материалами благодаря некоторым интересным свойствам, таким как простота синтеза, уникальная структура, равномерное распределение катионов различных металлов в бруситовом слое, поверхностные гидроксильные группы, гибкая перестраиваемость, интеркалированные анионы с межслоевыми пространствами, свойствами набухания, высокой химической и термической стабильностью, способностью интеркалировать различные типы анионов, а также высокой биосовместимостью. Эта обзорная статья посвящена информации о методах синтеза слоистых двойных гидроксидов и их применении во многих областях. Обсуждаются наиболее распространенные методы синтеза слоистых двойных гидроксидов: со-осаждение, гидролиз мочевины, гидротермальный синтез, золь-гель, реконструкция и др. СДГ демонстрирует отличные характеристики в качестве многофункционального материала для его перспективных применений в области катализаторов, водоподготовки, антипиренов, полимерных добавок, адсорбентов, атомной промышленности, защиты окружающей среды, фотокатализаторов и материаловедения.
Список литературы
1. Palacio L.A., Velásquez J., Echavarría A., Faro A. [et al.] Total oxidation of toluene over calcined trimetallic hydrotalcites type catalysts// J. Hazard. Mater. – 2010. – Vol. 177. – P. 407–413. – URL: https://doi.org/10.1016/j.jhazmat.2009.12.048
2. Kikhtyanin O., Čapek L., Tišler Z., Velvarská R. [et. al.] Physico-chemical properties of MgGa mixed oxides and reconstructed layered double hydroxides and their performances in aldol condensation of furfural and acetone //J. Front. Chem. – 2018. – Vol. 6. – P. 1–17. – URL: https://doi.org/10.3389%2Ffchem.2018.00176
3. Liu H., Xu W., Liu X. [et.al.] Aldol condensation of furfural and acetone on layered double hydroxides// J. Kinet. Catal. – 2010. – Vol. 51. –P. 75–80. – URL: https://doi.org/10.1134/S0023158410010131
4. Hernández W.Y., Lauwaert J., Van der Voort P. Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic feedstock biorefinery scheme // J. Green Chem. – 2010. –Vol. 19. – P.526–530. – URL: https://doi.org/10.1039/C7GC02795H
5. Lin X., Li R., Lu M. [et al.] Carbon dioxide reforming of methane over Ni catalysts prepared from Ni–Mg–Al layered double hydroxides: influence of Ni loadings// J. Fuel. – 2015. – Vol. 62. – P. 271–280. – URL: https://doi.org/10.1016/j.fuel.2015.09.021
6. Sipos P., Pálinkó I. As-prepared and intercalated layered double hydroxides of the hydrocalumite type as efficient catalysts in various reactions// J. Catal. Today. – 2017. – Vol. 306. – P. 2–41. – URL: https://doi.org/10.1016/j.cattod.2016.12.004
7. Edenharter A., Feicht P., Diar-Bakerly B. Superior flame retardant by combining high aspect ratio layered double hydroxide and graphene oxide// J. Polymer. – 2016. – Vol. 91. – P. 41–49. – URL: https://doi.org/10.1016/j.polymer.2016.03.020
8. Friedel K.O., Rein D., Lüttmann C. [et al.] Ammonia decomposition and synthesis over multinary magnesioferrites: promotional effect of Ga on Fe catalysts for the decompostition reaction// J. Chem. – 2017. – Vol. 10. – P. 659–671. – URL: https://doi.org/10.1002/cctc.201601355
9. Balsamo N., Mendieta S., Oliva M. Synthesis and characterization of metal mixed oxides from layered double hydroxides// J. Proc. Mater. Sci. – 2012. – Vol. 1. – P. 506–513. – URL: https://doi.org/10.1016/J.MSPRO.2012.06.068
10. Li S., Wang H., Li W. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor// J. Appl. Catal. – 2015. – Vol. 166. – P. 260–269. – URL: https://doi.org/10.1007/s11426-015-5469-8
11. Wang W., Xu Z., Guo Z. [et al.] Layered double hydroxide and related catalysts for hydrogen production and a biorefinery// Chin. J. Catal. – 2015. Vol. 36. – P. 139–147. – URL: https://doi.org/10.1016/S1872-2067(14)60229-1
12. He J. [et al.] Preparation of Layered Double Hydroxides// Springer Berlin Heidelberg. – 2006. – Vol. 1. – P. 89–119. – URL: https://doi.org/10.3390/books978-3-0365-0307-3
13. Goh K.H., Lim T.T., and Dong Z. Application of layered double hydroxides for removal of oxyanions: A review// J. Water Research. – 2007. – Vol. 42. – P. 1343–1368. – URL: https://doi.org/10.1016/j.watres.2007.10.043
14. Jin W. Recent Advances in the Synthesis of Layered, Double- Hydroxide Based Materials and Their Applications in Hydrogen and Oxygen Evolution// J. Energy Technology. – 2016. – Vol. 4. – P. 354–368. URL: https://doi.org/10.1002/ente.201500343
15. Benício L.P., [et al.] Layered double hydroxides: Nanomaterials for applications in agriculture// J. Revista Brasileira de Ciência do Solo. – 2015. – Vol. 3. – P. 1–13. – URL: https://doi.org/10.1590/01000683rbcs20150817
16. Feng L., Xue D. Applications of Layered Double Hydroxides, Part of the Structure and Bonding book series// Springer, Berlin, Heidelberg. – 2005. – Vol. 119. – P. 193–223. – URL: https://doi.org/10.3390/books978-3-0365-0307-3
17. Rives V. Characterisation of layered double hydroxides and their decomposition products// J. Materials Chemistry and Physics. – 2002. – Vol. 75. – P. 19-25. – URL: https://doi.org/10.1016/S0254-0584(02)00024-X
18. Crepaldi E.L., Pavan P.C., Valim J.B. Comparative study of the co-precipitation methods for the preparation of layered double hydroxides// J. Braz. Chem. Soc. – 2011. – Vol. 11. P. 64–70. – URL: https://doi.org/10.1590/S0103-50532000000100012
19. Cavani F., Trifiro F., and Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications// J. Catal. Today. – 1991. – Vol. 11. – P. 173–301. – URL: https://doi.org/10.1016/0920-5861(91)80068-K
20. Pausch I. [et al.] Syntheses of disordered and aluminumrich hydrotalcite-like compounds// J. Clays and Clay Miner. – 1986. – Vol. 34. – P. 507–10. – URL: https://doi.org/10.1346/CCMN.1986.0340502
21. Vaccari A. Preparation and catalytic properties of cationic and anionic clays// J. Catal. Today. – 1998. – Vol. 41. – P. 53–71. – URL: https://doi.org/10.1016/S0920-5861(98)00038-8
22. Tonto J., Bordonal A.C., Naal Z., Valim J.B. Conducting polymers/layered double hydroxides intercalated nanocomposites// J. Materials Science–Advanced Topics. – 2013. – Vol. 3. – P. 3–3. – URL: https://doi.org/10.5772/54803
23. Pinnavaia T.J., Kwon T., Dimotakis E.D. [et al.] Polyoxometalate intercalated layered double hydroxides// US Patent. – 1999. – P.203. – URL: https://patents.google.com/patent/US5079203A/en
24. Zhao Y., Li F. [et al.] Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps// J. Chemistry of Materials. – 2002. – Vol. 14. – P. 4286-4291. – URL: https://doi.org/10.1021/cm020370h
25. Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen// € Mathematisch-Physikalische Klasse. – 1918. – Vol. 4. –P. 98–100. – URL: https://eudml.org/journal/10154
26. Balayeva O.O., Azizov A.A., Muradov M.B., Maharramov A.M., Eyvazova G.M., Alosmanov R.M., Mamiyev Z.Q., and Aghamaliyev Z.A. β-NiS and Ni3S4 nanostructures: fabrication and characterization// J. Materials Research Bulletin. – 2016. – Vol. 75. – P. 155-161. – URL: https://doi.org/10.1016/j.materresbull.2015.11.037
27. Ibrahimova Kh.A., Azizov A.A., Balayeva O.O., Alosmanov R.M., and Mammadyarova S.C. Mechanochemical synthesis of PbS/Ni–Cr layered double hydroxide nanocomposite// J. Mendeleev Communications. – 2021. – Vol. 31. –P. 100–103. – URL: https://doi.org/10.1016/j.mencom.2021.01.031
28. Aisawa S., Kudo H., Hoshi T., Takahashi S., Hirahar H. Intercalation behavior of amino acids into Zn–Al-layered double hydroxide by calcination–rehydration reaction// J.Solid State Chem. – 2004. –Vol. 177. – P. 3987–3994. – URL: https://doi.org/10.1016%2Fj.jssc.2004.07.024
29. Taviot-Gueho C. Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications// Advanced Functional Materials. – 2017. – Vol. 28. – P. 1868–1874. – URL: https://doi.org/10.1002/adfm.201703868
30. Inayat, A., Klumpp M., and Schwieger W. The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion// J. Appl. Clay Sci. – 2011. – Vol. 51. – P. 452–459. – URL: https://doi.org/10.1016/j.clay.2011.01.008
31. Costantino U. [et al.] New synthetic routes to hydrotalcitelike compounds. Characterization and properties of the obtained materials// Eur. J. Inorg. Chem. – 1998. – Vol. 10. – P. 1439–1446. – URL: https://doi.org/10.1016/j.clay.2011.01.008
32. Yu J., Wang Q., O’Hare D., Sun L. Preparation of two dimensional layered double hydroxides nanosheetsand their applications// J. Chem. Soc. Rev. – 2017. – Vol. 46. – P. 5950–5974. – URL: https://doi.org/10.1039/C7CS00318H
33. Adachi-Pagano M., Forano C., Besse J.P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology// J. Mater. Chem. -2003. –Vol. 13. – P. 1988–1993. URL: https://doi.org/10.1039/B302747N
34. Wang Q., O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets// Chem. Rev. – 2012. – Vol. 112. – P. 4124– 4155. – URL: https://doi.org/10.1021/cr200434v
35. Bai X., Liu Q., Zhang H. [et al.] Nickel-Cobalt Layered Double Hydroxide Nanowires on Three Dimensional Graphene Nickel Foam for High Performance Asymmetric Supercapacitors// Electrochimica Acta. – 2016. – Vol. 215. – P. 492. – URL: https://doi.org/10.1016/j.electacta.2016.08.134
36. Rao M.M., Reddy B.R., Jayalakshmi M. Hydrothermal synthesis of Mg-Al hydrotalcites by urea hydrolysis// J. Mater. Res. Bull. – 2005. – Vol. 40. – P. 347–359. – URL: https://doi.org/10.1016%2Fj.materresbull.2004.10.007
37. Theiss F.L., Ayoko G.A., Frost R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-a review// J. Appl. Surf. Sci. – 2016. – Vol. 383. – P. 200–213. URL https://doi.org/10.1016/j.apsusc.2016.04.150
38. Mishra G., Dash B., Pandey S. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials// J. Appl. Clay Sci. – 2018. – Vol. 153. – P. 172–186. – URL: https://doi.org/10.1016/j.clay.2017.12.021
39. Bravo-Suárez J.J., Páez-Mozo E.A., Oyama S.T. Review of the synthesis of layered double hydroxides: a thermodynamic approach// J. Quim. Nova. – 2004. – Vol. 27. – P. 601–614. – URL: https://doi.org/10.1590/S0100-40422004000400015
40. Olafsen A. Mechanistic features for propane reforming by carbon dioxide over a Ni/Mg(Al)O hydrotalcite-derived catalyst// J. Catal. – 2005. – Vol. 229. – P. 163–175. – URL: https://doi.org/10.1016/j.jcat.2004.10.002
41. Miyata S. Anion-exchange properties of hydrotalcite-like compounds// J. Clays and Clay Miner. – 1983. – Vol. 31. P. 305–311. – URL: https://asset-pdf.scinapse.io/prod/2136451159/2136451159.pdf
42. Evans D.G., Slade R.C.T. Structural aspects of layered double hydroxides, in: D.M.P. Mingos (Ed.) Layered Double Hydroxides// Springer, New York. – 2006. – P. 234. URL: https://doi.org/10.1007/430_005
43. Chai H., Xu X., Lin Y., Evans D.G., Li D. Synthesis and UV absorption properties of 2,3-dihydroxynaphthalene-6-sulfonate anion-intercalated Zn–Al layered double hydroxides// Polym. Degrad. Stab. – 2009. – Vol. 94. – P. 744– 749. –URL: https://doi.org/10.1016/j.polymdegradstab.2008.09.007
44. Reichle W.T. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) // J. Solid State Ionics. – 1986. – Vol. 22. – P. 135–41. – URL: https://doi.org/10.1016/0167-2738(86)90067-6
45. Bish D.L. Thermal intercalation of layered double hydroxide// J. Bull Minéral. – 1980. –Vol. 5. – P. 103–175. – URL: https://www.researchgate.net/publication/248838724_Anion_Exchange_in_Layered_Double_Hydroxides_by_Surfactant_Salt_Formation
46. Fornari A.C., Neto R.M., Lenzi G.G. Utilization of sol-gel CuO-ZnO-Al2O3 catalysts in the methanol steam reforming for hydrogen production// Can. J. Chem. Eng. – 2017. – Vol. 95. – P. 2258–2271. – URL: https://doi.org/10.1002/CJCE.23005
47. Evans D.G. [et al.] Structural aspects of layered double hydroxides// Springer, New York. – 2006. – P. 234. – URL: https://doi.org/10.1007/430_005
48. Sertsova A.A., Subcheva E.N., Yurtov E.V. Synthesis and study of structure formation of layered double hydroxides based on Mg, Zn, Cu, and Al// Russ. J. Inorg. Chem. 2015. – Vol. 60. – P. 23–32. – URL: https://doi.org/10.1134/S0036023615010167
49. Bellotto M., Rebours B., Clause O. Hydrotalcite Decomposition Mechanism: A Clue to the Structure and Reactivity of Spinel-like Mixed Oxides// The Journal of Physical Chemistry. – 1996. – Vol. 100. – No. 20. – P. 8535–8542. – URL: https://doi.org/10.1021/JP960040I
50. Lwin Y., Yarmo M.A., Yaakob Z. [et al.] Synthesis and characterization of Cu–Al layered double hydroxides// J. Mater. Res. Bull. – 2001. – Vol. 36. – P. 193–198. – URL: https://www.jmsse.in/files/474%20trinh%20duy%20nguyen%20et%20al.pdf
51. Hibino T. Acid treatment of layered double hydroxides containing carbonate// Eur. J. Inorg. Chem. – 2014. – Vol. 20. – P. 531. – URL: https://doi.org/10.1002/ejic.201701067
52. Yang W., Kim Y., Liu P.K. [et al.] Thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide// J. Chem. Eng. Sci. – 2002. – Vol. 57. – P. 2945–2953. – URL: https://doi.org/10.1021/ie0308036
53. Venugopal B.R., Shivakumara C., Rajamathi M. Composite of layered double hydroxides obtained through random costacking of layers from Mg-Al and Co-Al LDHs by delamination-restacking: Thermal decomposition and reconstruction behavior// J. Solid State Sci. – 2007. – Vol. 9. – P. 287–294. – URL: https://doi.org/10.1016/j.solidstatesciences.2007.01.006
54. Takehira K. Recent development of layered double hydroxide-derived catalysts − Rehydration, reconstitution, and supporting, aiming at commercial application// J. Appl. Clay Sci. – 2017. – Vol. 136. – P. 112–141. – URL: https://doi.org/10.1016/j.clay.2016.11.012
55. Bravo-Suárez J.J., Páez-Mozo E.A., Oyama S.T. Review of the synthesis of layered double hydroxides: a thermodynamic approach// J. Quim. Nova. – 2004. – Vol. 27. – P. 601–614. – URL: https://doi.org/10.1590/S0100-40422004000400015
56. Fan G., Li F., Evans D.G., Duan X. Catalytic applications of layered double hydroxides: recent advances and perspectives// Chem. Soc. Rev. – 2014. – Vol. 43. – P. 7040– 7066. – URL: https://doi.org/10.1039/C4CS00160E
57. Nalawade P., Aware B., Kadam V.J. [et al.] Layered double hydroxides: a review// J. Sci. Ind. Res. – 2009. – Vol. 68. – P. 267. – URL: https://www.hazemsakeek.net/wp-content/uploads/2021/06/LDH.pdf
58. Tichit D., Coq B. Catalysis by hydrotalcites and related materials// J. Cattech. – 2003. – Vol. 7. – P. 206–17. – URL: https://doi.org/10.1023/B:CATT.0000007166.65577.34
59. Choy J.H., Kwak S.Y., Park J.S., Jeong Y.J. Cellular uptake behavior of [32P] labeled ATP-LDH nanohybrids//. J. Mater Chem. – 2001. – Vol. 11. – P. 1667–71. – URL: https://doi.org/10.1039/B008680K
60. Baig M.M., Gul I.H., Ahmad R. [et al.] One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting// J. Material Science. – 2021. – Vol. 56. – P. 18636–18649. –URL: https://oi.org/10.1007/s10853-021-06431-x
61. Bukhtiyarova M., Lunkenbein T., Kähler K. Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion// Catal. Lett. – 2017. – Vol. 147. – P. 416–427. – URL: https://link.springer.com/article/10.1007/s10562-016-1960-x
62. Chubar N., Gilmour R., Gerda V. Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability// J. Adv. Colloid Interface Sci. – 2017. – Vol. 245. –P. 62–80. – URL: https://doi.org/10.1016/j.cis.2017.04.013
63. Jamil S., Alvi A.R.; Khan S.R. Layered double hydroxides (LDHs): Synthesis & Applications// Prog. Chem. – 2019. – Vol. 31. – P. 394−412. – URL: https://doi.org/10.7536/PC180505
64. Xia S.J., Liu F.X., Ni Z.M. [et al.] Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B// J. Colloid Interface Sci. – 2013. – Vol. 405. – P. 195–200. – URL: https://doi.org/10.1016/j.jcis.2013.05.064
65. Nejati K., Akbari A.R., Davari S. [et al.] Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation// New J. Chem. – 2018. – Vol. 42. – P. 2889–2895. – URL: https://doi.org/10.1039/C7NJ04469K
66. Fernández J.M., Ulibarri M.A., Labajos F.M. [et al.] The effect of iron on the crystalline phases formed upon thermal decomposition of Mg-Fe-Al hydrotalcites// J. Mater. Chem. – 1998. – Vol. 8. – P. 2507–2514. – URL: https://doi.org/10.1039/A804867C
67. Zeng H.-Y., Wang Y.-J., Feng Z. [et al.] Synthesis of propylene glycol monomethyl ether over Mg/Al Hydrotalcite catalyst.// Catal. Lett. – 2010. – Vol. 137. – P. 94– 103. – URL: https://doi.org/10.1007/s10562-010-0335-y
68. Rezvani Z., Khodam F., Mokhtari A. [et al.] Amine-assisted syntheses of carbonate-free and highly crystalline nitrate-containing Zn-Al layered double hydroxides// Anorg. Allg. Chem. – 2014. – Vol. 640. – P. 2203–2207. – URL: https://doi.org/10.1002/zaac.201400190
69. Darr J.A., Zhang J., Makwana N.M., Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions// J. Chem. Rev. – 2017. – Vol. 117. – P. 11125–11238. – URL: https://doi.org/10.1021/acs.chemrev.6b00417
70. Zhang J., Gong C., Zeng X. Continuous flow chemistry: new strategies for preparative inorganic chemistry// J. Chem. Rev. – 2016. – Vol. 324. – P. 39–53. – URL: https://doi.org/10.1016/J.CCR.2016.06.011
71. Lv L., Sun P.D., Gu Z.Y. [et al.] Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger// J. Hazard Mater. – 2009. – Vol. 161. – P. 1444–1449. – URL: https://doi.org/10.1016/j.jhazmat.2008.04.114
72. Velu S., Suzuki K., Osaka T. [et.al.] Synthesis of new Sn incorporated layered double hydroxides and their evolution to mixed oxides// J. Mater. Res. Bull. – 1999. – Vol. 34. – P. 1707–1717. – URL: https://doi.org/10.1021/cm990067p
73. Velu S., Sabde D.P., Shah N. [et al.] New hydrotalcite-like anionic clays containing Zr4+ in the layers: synthesis and physicochemical properties// J. Chemistry of Materials. – 1996. – Vol. 10. – P. 3451–3458. – URL: https://doi.org/10.1021/cm980185x
74. Gao L.J., Teng G.Y., Lv J.H. [et al.] Biodiesel synthesis catalyzed by the KF/Ca-Mg-Al hydrotalcite base catalyst// Energy Fuel. – 2010. – Vol. 24. – P. 646–651. – URL: https://doi.org/10.1021/ef900800d
75. Choudary B.M., Lakshmi M. [et al.] Layered double hydroxide fluoride: a novel solid base catalyst for C-C bond formation// J. Green Chemistry. – 2001. – Vol. 3. – P. 257–260. – URL: https://doi.org/10.1039/B107124F
76. Li C., Wei M., Duan X. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents// Small. – 2014. – Vol. 10. – P. 4469–4486. – URL: https://doi.org/10.1002/smll.201401464
77. Sharma U., Tiyaga B., Jasra R.V. Synthesis and characterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption// J. Ind. Eng. Chem. Res. – 2008. – Vol. 47. – P. 9588–9595. – URL: https://doi.org/10.1021/ie800365t
78. Béres A., Pálinkó I., Kiricsi I. [et al.] Layered double hydroxides and their pillared derivatives – materials for solid base catalysis, synthesis and characterization// Appl. Catal. – 1999. – Vol. 182. – P. 237–247. – URL: http://real.mtak.hu/id/eprint/5367
79. Vulic T., Reitzmann A., Ranogajec J. [et al.] The influence of synthesis method and Mg–Al–Fe content on the thermal stability of layered double hydroxides// J. Therm. Anal. Calorim. – 2012. – Vol. 110. – P. 227–233. – URL: https://doi.org/10.1007/s10973-012-2230-9
80. Kühl S., Friedrich M., Armbrüsterb M., Behrens M. Cu, Zn, Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming – pH controlled synthesis by microemulsion technique// J. Mater. Chem. – 2012. – Vol. 22. – P. 9632–9638. – URL: https://doi.org/10.1039/C2JM16138A
81. Chong M.N., Jin B., Chow C.W.K., Saint C. Recent developments in photocatalytic water treatment technology: a review// Water Res. – 2010. – Vol. 44. – P. 2997– 3027. – URL: https://doi.org/10.1016/j.watres.2010.02.039
82. Mohapatra L., Parida K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts// J. Mater. Chem. – 2016. – Vol. 4. – P. 10744–10766. – URL: https://doi.org/10.1016/j.watres.2010.02.039
83. Abderrazek K., Srasra N.F., Srasra E. Synthesis and characterization of [Zn-Al] layered double hydroxides: effect of the operating parameters// J. Chin. Chem. Soc. – 2017. – Vol. 64. – P. 346–353. – URL: https://doi.org/10.1002/jccs.201600258
84. Giovannelli F. Magnetic properties of Ni(II)-Mn(III) LDHs// Mater. Chem. Phys. – 2012. – Vol. 137. – P. 55–60. – URL: https://doi.org/10.1016/j.matchemphys.2012.07.057
85. Barriga C. [et al.]Synthesis and characterization of new hydrotalcite-like compounds containing Ni(II) and Mn(III) in the hydroxide layers and of their calcination products// J. Solid State Chem. – 1996. – Vol. 124. – P. 205–213. – URL: https://doi.org/10.1021/ic950835o
86. Chang X. [et al.] Oxidizing synthesis of Ni2+-Mn3+ layered double hydroxide with good crystallinity// J. Mater. Res. Bull. – 2011. – Vol. 46. – P. 1843–1847. – URL: https://doi.org/10.1016/j.materresbull.2011.07.035
87. Abello S, Mitchell S., Santiago M. Perturbing the properties of layered double hydroxides by continuous coprecipitation with short residence time// J. Mater. Chem. – 2010. – Vol. 20. – P. 5878−5887. – URL: https://doi.org/10.1039/C0JM00088D
88. Gu Z., Atherton J.J., Xu Z.P. Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications// J. Chem. Commun. (Cambridge, U. K.). – 2015. – Vol. 51. – P. 3024–3036. – URL: https://doi.org/10.1039/C4CC07715F
89. Liu J., Chen G.M., Yang J.P. Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability// J. Polymer. – 2008. – Vol. 49. – P. 3923–3927. – URL: https://doi.org/10.1016/j.polymer.2008.07.014
90. Pang X.J., Sun M.Y., Ma X.M. Synthesis of layered double hydroxide nanosheets by coprecipitation using a Ttype microchannel reactor// J. Solid State Chem. – 2014. – Vol. 210. – P. 111−115. – URL: https://doi.org/10.1016/J.JSSC.2013.11.013
91. Zhao Y., Liang J., Li F., Duan X. Selectivity of crystal growth direction in layered double hydroxides// J. Tsinghua Sci. Technol. – 2004. – Vol. 9. – P. 667–671. – URL: https://www.researchgate.net/journal/Tsinghua-Science-Technology-1007-0214
92. Olfs H.-W., Torres-Dorante L.O., Eckelt R. Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties// J. Appl. Clay Sci. – 2009. – Vol. 43. – P. 459–464. – URL: https://doi.org/10.1016/j.clay.2008.10.009
93. Aimoz L., Taviot-Guého C. Anion and Cation Order in Iodide Bearing Mg/Zn–Al Layered Double Hydroxides// The Journal of Physical Chemistry C. – 2012. – Vol. 116. – P. 5460–5475. – URL: https://doi.org/10.1021/jp2119636
94. Teiss F.L., Sear-Hall M.J. [et al.] Zinc aluminium layered double hydroxides for the removal of iodine and iodide from aqueous solutions// J. Desalination and Water Treatment. – 2012. – Vol. 39. – P. 166–175. – URL: https://doi.org/10.1080/19443994.2012.669171
95. Maria D.C., Chiara B., Leonardo M. [et al.] On the Intercalation of the Iodine-Iodide Couple on Layered Double Hydroxides with Different Particle Sizes// Inorganic Chemistry. – 2012. – Vol. 51. – P. 2560–2568. – URL: https://doi.org/10.1021/ic202520v
96. Miyata S. The Syntheses of Hydrotalcite-Like Compounds and Their Structure and Physico-Chemical Properties// J. Clays and Clay Minerals. – 1975. – Vol. 23. – P. 375. –URL: https://doi.org/10.1346/CCMN.1975.0230508
97. Liang L., Li L. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants// J. Radioanal. Nucl. Chem. – 2007. – Vol. 273. – P. 221–226. – URL: https://doi.org/10.1007/s10967-007-0740-x
98. Zhang J., Zhang F., Ren L. [et al.] Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions// J. Materials Chemistry and Physics. – 2007. – Vol. 85. – P. 207–214. – URL: https://doi.org/10.1016/J.MATCHEMPHYS.2004.01.020
99. Prasanna S.V., Kamath P.V., Shivakumara C. Interlayer structure of iodide intercalated layered double hydroxides (LDHs)// J. Colloid and Interface Science. – 2008. – Vol. 344. – P. 508–512. – URL: https://doi.org/10.1016/j.jcis.2010.01.013
100. Kulyukhin S.A., Krasavina E.P., Gredina I.V. [ et al.] Sorption of cesium, strontium, and yttrium radionuclides from the aqueous phase on layered double hydroxides// J. Radiochemistry. – 2008. – Vol. 50. – P. 493–501. – URL: https://doi.org/10.1134/S1066362208050111
101. Chibwe K., Jones W. Intercalation of organic and inorganic anions into layered double hydroxides// J. Chemical Society, Chemical Communications. – 1989. – Vol. 14. – P. 926–927. – URL: https://doi.org/10.1039/C39890000926
102. Toraishi T., Nagasaki S., Tanaka S. Adsorption behavior of IO3− by CO32−- and NO3−-hydrotalcite// J. Applied Clay Science. – 2002. – Vol. 22. – P. 17–23. – URL: https://doi.org/10.1016/S0169-1317(02)00108-4
Рецензия
Для цитирования:
Ибрагимова К.А. МЕТОДЫ СИНТЕЗА И ПРИМЕНЕНИЕ СЛОИСТЫХ ДВОЙНЫХ ГИДРОКСИДОВ – КРАТКИЙ ОБЗОР. Вестник НЯЦ РК. 2022;(4):16-29. https://doi.org/10.52676/1729-7885-2022-4-17-29
For citation:
Ibrahimova K.A. THE SYNTHESIS METHODS AND APPLICATIONS OF LAYERED DOUBLE HYDROXIDES – A BRIEF REVIEW. NNC RK Bulletin. 2022;(4):16-29. https://doi.org/10.52676/1729-7885-2022-4-17-29