Preview

NNC RK Bulletin

Advanced search

APPLICATION OF HVOF TECHNOLOGY FOR WC-BASED WEAR-RESISTANT COATINGS – AN OVERVIEW

https://doi.org/10.52676/1729-7885-2023-1-4-14

Abstract

The article presents the main problems of wear and service life of slide gate valves for trunk pipeline transport of oil and gas industry. One of the possible ways to solve these problems is the application of a thin layer of wear-resistant and corrosion-resistant coatings. Due to the ever-increasing cost of materials, as well as the increased requirements for materials, coating methods have recently become increasingly important. Among the gas-thermal coating methods, the High Velocity Oxygen-Fuel Spray (HVOF) technology is a new and rapidly developing technology that produces high density coatings with porosity less than 1%, with improved hardness and adhesion as well as improved erosion, corrosion and wear resistance properties. This overview article provides a comparative review of the characteristics of carbide coatings produced using different spraying technologies.

About the Authors

B. K. Rakhadilov
S. Amanzholov East Kazakhstan University
Kazakhstan

Bauyrzhan K. Rakhadilov - PhD, Associate Professor of the Department of Engineering and Technology.

Ust-Kamenogorsk



N. Muktanova
D. Serikbayev East Kazakhstan Technical University
Kazakhstan

Nazerke Muktanova - 2nd year doctoral student of the specialty Technical Physics.

Ust-Kamenogorsk



L. G. Zhurerova
S. Amanzholov East Kazakhstan University
Kazakhstan

Laila G. Zhurerova - Senior Researcher of SIC "Surface Engineering and Tribology".

Ust-Kamenogorsk



References

1. Sherov K.T., Gabdysalyk R. Analiz i issledovanie problemy izgotovleniya krupnykh zadvizhek dlya magistral'nykh truboprovodov // Trudy universiteta. Karaganda: Izd-vo KarGTU. – 2018. No. 1 (70) – P. 13–17.

2. https://www.youtube.com/watch?v=wg5IZN2noH0

3. https://www.uzpa.kz/about/

4. Poloskov S. S. Problemy naplavki uplotnitel'nykh poverkhnostey truboprovodnoy armatury i puti ikh resheniya // Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta. – 2019. T. 19. No. 4. – P. 349–356.

5. Tukov S.A., Korchagina M.V., Kireev S.O. Problemy germetichnosti sharovykh kranov i metody ikh resheniya // Donskoy gosudarstvennyy tekhnicheskiy universitet. – 2018, P. 12–15.

6. http://www.indmet.ru/tech/vyisokoskorostnoe-gazotermicheskoe-napyilenie-hvof

7. Keshavamurthy R., Sudhan M.D., Kumar A., Ranjan V., Singh P., Singh A. Wear behaviour of hard chrome and tungsten carbide-HVOF coatings // Materialstoday: proceedings. – 2018. V. 5. P. 24587–24594. https://doi.org/10.1016/j.matpr.2018.10.256

8. Kumar H., Chittosiya Ch., Shukla V.N. HVOF Sprayed WC Based Cermet Coating for Mitigation of Cavitation, Erosion & Abrasion in Hydro Turbine Blade // Materials Today: Proceedings. – 2018. V. 5. P. 6413–6420. https://doi.org/10.1016/j.matpr.2017.12.253

9. Li G.P., Peng Y.B., Yan L.W., Xu T., Long J.Z., Luo F.H. Effects of Cr concentration on the microstructure and properties of WC-Ni cemented carbides // Journal of Materials Research and Technology. – 2020. V.9. – P. 902-907. https://doi.org/10.1016/j.jmrt.2019.11.030

10. Druzhnova Ya.S. Razvitie metodov gazotermicheskogo napyleniya uprochnyayushchikh pokrytiy na osnove karbidov vol'frama i khroma (obzor) // Trudy VIAM. – 2022. No. 10 (116).

11. Jianxing Yu, Xin Liu, Yang Yu, Haoda Li, Pengfei Liu, Kaihang Huang and Ruoke Sun. Research and Application of High-Velocity Oxygen Fuel Coatings // Coatings. – 2022. V. 12(6). P. 828. https://doi.org/10.3390/coatings12060828

12. Samodurova, M., Shaburova, N., Samoilova, O., Moghaddam A.O., Pashkeev K., Ul’yanitckiy V., Trofimov E. Properties of WC–10%Co–4%Cr Detonation Spray Coating Deposited on the Al–4%Cu–1%Mg Alloy // Materials. – 2021. V. 14(5). https://doi.org/10.3390/ma14051206

13. Ghadami F., Sabour Rouh Aghdam A. Improvement of high velocity oxy-fuel spray coatings by thermal posttreatments: A critical review // Thin Solid Films. – 2019. V.678. P. 42–52. https://doi.org/10.1016/j.tsf.2019.02.019

14. Maharajan S., Michael Thomas Rex F., Ravindran D., Rajakarunakaran S. Erosive and corrosive wear performance and characterization studies of plasma-sprayed WC/Cr3C2 coating on SS316 //Applied Ceramic Technology. – 2022. https://doi.org/10.1111/ijac.14118

15. Bhosale D.G., Ram Prabhu T., Rathod W.S. Sliding and erosion wear behaviour of thermal sprayed WC-Cr3C2-Ni coatings // Surface and Coatings Technology. – 2020. V. 400. https://doi.org/10.1016/j.surfcoat.2020.126192

16. Vats A, Patnaik A., Meena M.L, Shringi D. Role of microfactors on microstructure and on the tribological performance of HVOF coatings: A review // IOP Conference Series: Materials Science and Engineering. – 2021. https://doi.org/10.1088/1757-899X/1017/1/012010

17. Robert J.K. Wood, S. Herd, Mandar R. Thakare. A critical review of the tribocorrosion of cemented and thermal sprayed tungsten carbide // Tribology International. – 2018. P. 491–509. https://doi.org/10.1016/j.triboint.2017.10.006

18. Zhou W.X., Zhou K.S., Li Y.X., Deng C.M., Zeng K.L. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings // Applied Surface Science. – 2017. V. 416, P. 33–44. https://doi.org/10.1016/j.apsusc.2017.04.132

19. Gopi R., Saravanan I., Devaraju A., Ponnusamy P. Tribological behaviour of thermal sprayed high velocity oxy-fuel coatings on tungsten carbide – A review // MaterialsToday: Proceeding. – 2020. V. 39. P. 292–295. https://doi.org/10.1016/j.matpr.2020.07.133

20. Picas J.A. [et al.]. Microstructure and wear resistance of WC–Co by three consolidation processing techniques // International Journal of Refractory Metals and Hard Materials. – 2009. V. 27, P. 344–349. https://doi.org/10.1016/j.ijrmhm.2008.07.002

21. http://www.indmet.ru/tech/vyisokoskorostnoe-gazotermicheskoe-napyilenie-hvof

22. https://www.plasmacentre.ru/oborudovanie/oborudovanie-dlya-napyileniya/ustanovka-hvof-termika/

23. https://www.plasmascience.kz/оборудование/

24. http://www.coating-ball.com/ru/index.php?page=high-velocity-spray

25. http://www.flamespraytech.ru/processes/HVOF

26. Batienkov R.V., Burkovskaya N.P., Bol'shakova A.N., Khudnev A.A. Vysokotemperaturnye kompozitsionnye materialy s metallicheskoy matritsey (obzor) // Trudy VIAM. – 2020. No. 6–7 (89).

27. Mishra T.K., Kumar A., Sinha S.K. Experimental investigation and study of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coating on its sliding wear behavior // International Journal of Refractory Metals and Hard Materials. – 2021, V. 94. https://doi.org/10.1016/j.ijrmhm.2020.105404

28. Magdy M. El Rayes, El-Sayed M. Sherif, Hany S. Abdo. Comparative study into microstructural and mechanical characterization of HVOF-WC-based coatings // Crystals. – 2022. 12(7), 969. https://doi.org/10.3390/cryst12070969

29. Testa V., Morelli S., Bolelli G., Benedetti B., Puddu P., Sassatelli P., Lusvarghi L. Alternative metallic matrices for WC-based HVOF coatings // Surface and Coatings Technology. – 2020. V. 402. https://doi.org/10.1016/j.surfcoat.2020.126308

30. Xiao-bin Liu, Jia-jie Kang, Wen Yue, Zhi-qiang Fu, Li-na Zhu, Ding-shun She, Jian Liang, Cheng-biao Wang. Performance evaluation of HVOF sprayed WC-10Co4Cr coatings under slurry erosion // Surface Engineering. – 2019. https://doi.org/10.1080/02670844.2019.1568661

31. Govande A.R., Chandak A., Sunil B.R., Dumpala R. Carbide-based thermal spray coatings: a review on performance characteristics and post-treatment // International Journal Refractory Metals and Hard Materials. – 2022. V. 103. https://doi.org/10.1016/j.ijrmhm.2021.105772

32. Panin A.V. [i dr.] Metody naneseniya zashchitnykh pokrytiy: uchebnoe posobie / A.V. Panin, A.R. Shugurov, A.G. Kolmakov // Tomskiy politekhnicheskiy universitet. – Tomsk: Izd-vo OOO “SPB Grafiks”, – 2020. – 109 p.

33. Donadei V, Koivoluoto H, Sarlin E, Vuoristo P. Lubricated icephobic coatings prepared by flame spraying with hybrid feedstock injection // Surface and Coatings Technology. – 2020. V. 403. https://doi.org/10.1016/j.surfcoat.2020.126396

34. Devaraj S., McDonald A., Chandra S. Metallization of porous polyethylene using a wire-arc spray process for heat transfer applications // Journal of Thermal Spray Technology. – 2021. V. 30. P. 145–156. https://doi.org/10.1007/s11666-020-01119-1

35. Jhonattan de la Roche, Juan Manuel Alvarado-Orozco, Pablo Andres Gomez, Irene Garcia Cano, Sergi Dosta, Alejandro Toro. Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4 + V2O5 molten salts // Surface and Coatings Technology. – 2022. V. 432. https://doi.org/10.1016/j.surfcoat.2021.128066

36. Huang C., Arseenko M., Zhao L., Xie Y., Elsenberg A., Li W., Gartner F., Simar A., Klassen T. Property prediction and crack growth behavior in cold sprayed Cu deposits // Materials & Design. – 2021. V. 206. https://doi.org/10.1016/j.matdes.2021.109826

37. Singh V., Singh I., Bansal A., Omer A., Singla A.K., Rampal A., Goyal D.K. Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC + CuNi-Cr) based novel coatings on SS316 steel // Surface and Coatings Technology. – 2022. V. 432. https://doi.org/10.1016/j.surfcoat.2021.128052

38. Praveen AS, Arjunan A. High-temperature oxidation and erosion of HVOF sprayed NiCrSiB/Al2O3 and NiCrSiB/WC–Co coatings // Applied Surface Science Advances. – 2022. V. 7. https://doi.org/10.1016/j.apsadv.2021.100191

39. Pishva, P.; Salehi, M.; Golozar, M.A. Effect of grinding on surface characteristics of HVOF-sprayed WC–10Co– 4Cr coatings // Surface Engineering. – 2020, V. 36, P. 1180–1189. https://doi.org/10.1080/02670844.2019.1647938

40. Jonda E., Łatka L. Comparative analysis of mechanical properties of WC-based cermet coatings sprayed by HVOF onto AZ31 magnesium alloy substrates // Advances in Science and Technology Research Journal. – 2021. V. 15. https://doi.org/10.12913/22998624/135979

41. Abdullahi K. Gujba, Mohammed S. Mahdipoor, Mamoun Medraj. Water droplet impingement erosion performance of WC-based coating sprayed by HVAF and HVOF // Wear an International Journal on the Science and Technology of Friction, Lubrication and Wear. – 2021. V. 484–485. https://doi.org/10.1016/j.wear.2021.203904

42. Bolelli G., Berger L.M., Börner T., Koivuluoto H., Lusvarghi L., Lyphout C., Markocsan N., Matikainen V., Nylén P., Sassatelli P., Trache R., Vuoristo P. Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment // Surface & Coatings Technology. – 2015. V. 265. https://doi.org/10.1016/j.surfcoat.2015.01.048

43. Marzanna Ksiazek, Ilona Nejman and Lukasz Boron. Investigation on Microstructure, Mechanical and Wear Properties of HVOF Sprayed Composite Coatings (WC– Co + CR) On Ductile Cast Iron // Materials. – 2021. V. 14(12). https://doi.org/10.3390/ma14123282

44. Karla O.M. and [et al.]. Microstructure and Properties Characterization of WC-Co-Cr Thermal Spray Coatings // Journal of Minerals and Materials Characterization and Engineering. – 2018. V. 6. P. 482-497. https://doi.org/10.4236/jmmce.2018.64034

45. Nguyen V. P., Dang T. N., Le C. C., & Wang D. A. Effect of coating thickness on fatigue behavior of AISI 1045 steel with HVOF thermal spray and hard chrome electroplating // Journal of Thermal Spray Technology. – 2020. V. 29(8). P. 1968–1981. https://doi.org/10.1007/s11666-020-01090-x

46. Vinh P. N., Thien N. D., & Le Chi C. Evaluating the effect of HVOF sprayed WC-10Co-4Cr and hard chromium electroplated coatings on fatigue strength of axle-shaped machine parts // In International Conference on Engineering Research and Applications. – 2018. P. 309–317. https://doi.org/10.1007/978-3-030-04792-4_41

47. Castro R. D. M., Rocha A. D. S., Mercado Curi E. I., & Peruch F. A comparison of microstructural, mechanical and tribological properties of WC-10Co4Cr-HVOF coating and hard chrome to use in hydraulic cylinders // American Journal of Materials Science. Rosemead. – 2018. Vol. 8. No. 1. P. 15–26. https://doi.org/10.5923/j.materials.20180801.03

48. Wu Y., Wang B., Hong S., Zhang J., Qin Y., & Li G. Dry sliding wear properties of HVOF sprayed WC–10Co–4Cr coating // Transactions of the Indian Institute of Metals. – 2015. V. 68(4). P. 581–586. https://doi.org/10.1007/s12666-014-0487-3

49. Wang D., Zhang B., Jia C., Gao F., Yu Y., Chu K., Zhang M., Zhao X. Influence of carbide grain size and crystal characteristics on the microstructure and mechanical properties of HVOF-sprayed WC-CoCr coatings // International Journal of Refractory Metals and Hard Materials. – 2017. V. 69. P. 138–152 https://doi.org/10.1016/j.ijrmhm.2017.08.008

50. Xiang D., Cheng X.D., Xiang Y.U., Chao L.I., Ding Z.X. Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC–10Co4Cr coating // Transactions of Nonferrous Metals Society of China. – 2018. V. 28. P. 487–494. https://doi.org/10.1016/S1003-6326(18)64681-3

51. Schwetzke R., Kreye H., Therm J. Microstructure and properties of tungsten carbide coatings sprayed with various high velocity oxygen fuel spray systems // Journal of Spray Technology. – 1999. V. 8(3). P. 433–438. https://doi.org/10.1361/105996399770350395

52. Haibin W., Qingfan Q. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder // Materials and Design. – 2020. V. 191. https://doi.org/10.1016/j.matdes.2020.108586

53. Li S., Guo Z., Xiong J., Lei Y., Li Y., Tang J. & Ye J. Corrosion behavior of HVOF sprayed hard face coatings in alkaline-sulfide solution // Applied Surface Science. – 2017. V. 416. P. 69–77. https://doi.org/10.1016/j.apsusc.2017.04.149

54. Julian Eßler, Dino Woelk, Dragos Utu, Gabriela Marginean. Influence of the powder feed rate on the properties of HVOF sprayed WC-based cermet coatings // Materials Today: Proceedings. – 2022. https://doi.org/10.1016/j.matpr.2022.11.120

55. Lima C. R. C. [et al.]. Developing alternative coatings for repair and restoration of pumps for caustic liquor transportation in the aluminum and nickel industry // Surface and Coatings Technology. – 2015. V. 268. P. 123–133. https://doi.org/10.1016/j.surfcoat.2014.08.010

56. Zheng C. [et al.]. Experimental study on the erosion behavior of WC-based high-velocity oxygen-fuel spray coating // Powder Technology. – 2017. V. 318. P. 383–389. https://doi.org/10.1016/j.powtec.2017.06.022

57. Singh J., Kumar S. and Mohapatra S. K. Tribological analysis of WC–10Co–4Cr and Ni– 20Cr2O3 coating on stainless steel 304 // Wear. – 2017. V. 376–377. P. 1105– 1111. https://doi.org/10.1016/j.wear.2017.01.032


Supplementary files

Review

For citations:


Rakhadilov B.K., Muktanova N., Zhurerova L.G. APPLICATION OF HVOF TECHNOLOGY FOR WC-BASED WEAR-RESISTANT COATINGS – AN OVERVIEW. NNC RK Bulletin. 2023;(1):4-14. (In Russ.) https://doi.org/10.52676/1729-7885-2023-1-4-14

Views: 831


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)