Preview

ҚР ҰЯО жаршысы

Кеңейтілген іздеу

ЭНЕРГИЯ САҚТАУ ҚҰРЫЛҒЫЛАРЫН ӘЗІРЛЕУДЕ КӨМІРТЕКТІ НАНОМАТЕРИАЛДАР НЕГІЗІНДЕГІ ГЕЛЬ-ПОЛИМЕРЛІ ЭЛЕКТРОЛИТТЕРДІ ҚОЛДАНУ – ШАҒЫН ШОЛУ

https://doi.org/10.52676/1729-7885-2023-2-33-42

Толық мәтін:

Аңдатпа

Қазіргі уақытта қоғам алдында тұрған өзекті мәселелердің бірі шектеулі, жоғары ластаушы қазба отындарын пайдаланатын қолданыстағы энергетикалық жүйені таза және сарқылмайтын тұрақты көздерге негізделген жаңа тұжырымдамамен ауыстыру болып табылады. Жаңартылатын энергия көздерін кең ауқымда пайдалану және іштен жанатын қозғалтқыштардан электромобильдерге көшу жақын болашақта ғылым мен техниканы дамытудың перспективалық стратегиясының бірі болып табылады. Жаңа буынның суперконденсаторларын (СК) әзірлеудегі ең перспективалы тәсілдердің бірі сұйық және қатты бейорганикалық электролиттерге қарағанда жанбайтындығы, электролиттердің ағып кетпеуі, тамаша икемділігі және өндірістегі төмен құны сияқты шешуші артықшылықтары бар қатты полимерлі электролиттерді пайдалану болып табылады. Бұл шағын шолуда СК-дың негізгі түрлерін, гель полимерлі электролиттерді (ГПЭ) әзірлеу үшін қолданылатын материалдар және көміртекті материалдардың бірнеше түрлеріне негізделген ГПЭ әзірлеуіндегі соңғы жетістіктер талқыланады.

Авторлар туралы

А. А. Машенцева
ҚР ЭМ «Ядролық физика институты» РМК; «Л.Н. Гумилев атындағы Еуразия ұлттық университеті» КеАҚ
Қазақстан

Алматы, Астана



А. Ә. Алманов
ҚР ЭМ «Ядролық физика институты» РМК; «Л.Н. Гумилев атындағы Еуразия ұлттық университеті» КеАҚ
Қазақстан

Алматы, Астана



А. Н. Айманова
ҚР ЭМ «Ядролық физика институты» РМК
Қазақстан

Алматы



А. М. Жумабаев
ҚР ЭМ «Ядролық физика институты» РМК; «Л.Н. Гумилев атындағы Еуразия ұлттық университеті» КеАҚ
Қазақстан

Алматы, Астана



Әдебиет тізімі

1. Yang X., Zhang F., Zhang L., Zhang T., Huang Y., Chen Y. A High– Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications // Adv. Funct. Mater. – 2013. – Vol. 23. – No. 26. – P. 3353–3360.

2. Gür T.M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage // Energy Environ. Sci. – 2018. – Vol. 11. – No. 10. – P. 2696–2767.

3. Mitali J., Dhinakaran S., Mohamad A.A. Energy storage systems: a review // Energy Storage Sav. – 2022. – Vol. 1. – No. 3. – P. 166–216.

4. Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors // Chem. Soc. Rev. – 2015. – Vol. 44. – No. 21. – P. 7484–7539.

5. Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries // Eur. Polym. J. – 2006. – Vol. 42. – No. 1. – P. 21–42.

6. Cheng X., Pan J., Zhao Y., Liao M., Peng H. Gel Polymer Electrolytes for Electrochemical Energy Storage // Adv. Energy Mater. – 2018. – Vol. 8. – No. 7. – P. 1702184.

7. Ngai K.S., Ramesh S., Ramesh K., Juan J.C. A review of polymer electrolytes: fundamental, approaches and applications // Ionics (Kiel). – 2016. – Vol. 22. – No. 8. – P. 1259–1279.

8. Rao M., Geng X., Liao Y., Hu S., Li W. Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery // J. Memb. Sci. – 2012. – Vol. 399–400. – P. 37– 42.

9. Porcarelli L., Gerbaldi C., Bella F., Nair J.R. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries // Sci. Rep. – 2016. – Vol. 6. – No. 1. – P. 19892.

10. Sagadevan S., Marlinda A.R., Chowdhury Z.Z., Wahab Y.B.A., Hamizi N.A., Shahid M.M., Mohammad F., et al. Fundamental electrochemical energy storage systems // Advances in Supercapacitor and SupercapatteryElsevier, 2021. – P. 27–43.

11. Tahir M.B., Abrar M., Tehseen A., Awan T.I., Bashir A., Nabi G. Nanotechnology: the road ahead // Chemistry of NanomaterialsElsevier, 2020. – P. 289–308.

12. Liu Y., Jiang S.P., Shao Z. Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development // Mater. Today Adv. – 2020. – Vol. 7. – P. 100072.

13. N. Pronkin S., Yu. Shokina N., Pham-Huu C. Redox Transitions in Pseudocapacitor Materials: Criteria and Ruling Factors // Redox Chemistry – From Molecules to Energy Storage. – IntechOpen, 2022. – Available from: http://dx.doi.org/10.5772/intechopen.104084

14. Jiang Y., Liu J. Definitions of Pseudocapacitive Materials: A Brief Review // Energy Environ. Mater. – 2019. – Vol. 2. – No. 1. – P. 30–37.

15. Herrero E., Buller L.J., Abruña H.D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials // Chem. Rev. – 2001. – Vol. 101. – No. 7. – P. 1897–1930.

16. Wen S., Lee J.-W., Yeo I.-H., Park J., Mho S. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2 // Electrochim. Acta – 2004. – Vol. 50. – No. 2–3. – P. 849–855.

17. Forouzandeh P., Kumaravel V., Pillai S.C. Electrode materials for supercapacitors: A review of recent advances // Catalysts – 2020. – Vol. 10. – No. 9. – P. 1–73.

18. Afif A., Rahman S.M., Tasfiah Azad A., Zaini J., Islan M.A., Azad A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage – A review // J. Energy Storage – 2019. – Vol. 25. – P. 100852.

19. Yang Y. A mini-review: Emerging all-solid-state energy storage electrode materials for flexible devices // Nanoscale – 2020. – Vol. 12. – No. 6. – P. 3560–3573.

20. Yang Y., Zhu T., Shen L., Liu Y., Zhang D., Zheng B., Gong K., et al. Recent progress in the all‐solid‐state flexible supercapacitors // SmartMat – 2022. – Vol. 3. – No. 3. – P. 349–383.

21. Shafiei N., Nasrollahzadeh M., Hegde G. Biopolymerbased (nano)materials for supercapacitor applications // Chemistry for Sustainable Applications – 2021. – P. 609– 671.

22. Nagarajarao S.H., Nandagudi A., Viswanatha R., Basavaraja B.M., Santosh M.S., Praveen B.M., Pandith A. Recent Developments in Supercapacitor Electrodes: A Mini Review // ChemEngineering – 2022. – Vol. 6. – No. 1. – P. 5.

23. Dhamodharan D., Ghoderao P.P., Dhinakaran V., Mubarak S., Divakaran N., Byun H.S. A review on graphene oxide effect in energy storage devices // J. Ind. Eng. Chem. – 2022. – Vol. 106. – P. 20–36.

24. Abdel Maksoud M.I.A., Fahim R.A., Shalan A.E., Abd Elkodous M., Olojede S.O., Osman A.I., Farrell C., et al. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review // Environ. Chem. Lett. – 2021. – Vol. 19. – No. 1. – P. 375–439.

25. Rajagopal S., Pulapparambil Vallikkattil R., Mohamed Ibrahim M., Velev D.G. Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress // Condens. Matter – 2022. – Vol. 7. – No. 1. – P. 6.

26. Ren W., Ding C., Fu X., Huang Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives // Energy Storage Mater. – 2021. – Vol. 34. – P. 515–535.

27. Huang C., Zhang J., Young N.P., Snaith H.J., Grant P.S. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications // Sci. Rep. – Nature Publishing Group, 2016. – Vol. 6. – No. July 2015. – P. 1–15.

28. Meng C., Liu C., Chen L., Hu C., Fan S. Highly flexible and all-solid-state paperlike polymer supercapacitors // Nano Lett. – 2010. – Vol. 10. – No. 10. – P. 4025–4031.

29. Ren W., Ding C., Fu X., Huang Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives // Energy Storage Mater. – Elsevier B.V., 2021. – Vol. 34. – No. August 2020. – P. 515–535.

30. Zhu M., Wu J., Wang Y., Song M., Long L., Siyal S.H., Yang X., et al. Recent advances in gel polymer electrolyte for high– Performance lithium batteries // Journal of Energy ChemistryElsevier B.V. and Science Press, 2019. – Vol. 37. – P. 126–142.

31. Yang Q., Deng N., Chen J., Cheng B., Kang W. The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries // Chem. Eng. J. – 2021. – Vol. 413. – P. 127427.

32. Fang Y., Yuan R., Ge W., Wang Y., Liu G., Li M., Xu J., et al. Synthesis and biological evaluation of 1,2,4,5-tetrasubstituted imidazoles // Res. Chem. Intermed. – Springer Netherlands, 2017. – Vol. 43. – No. 8. – P. 4413–4421.

33. Lv L., Hui B., Zhang X., Zou Y., Yang D. Lamellar agarose/graphene oxide gel polymer electrolyte network for all-solid-state supercapacitor // Chem. Eng. J. – Elsevier B.V., 2023. – Vol. 452. – No. P3. – P. 139443.

34. Liu B., Huang Y., Cao H., Song A., Lin Y., Wang M., Li X. A high– Performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane // J. Solid State Electrochem. – 2018. – Vol. 22. – No. 3. – P. 807–816.

35. Tafete G.A., Abera M.K., Thothadri G. Review on nanocellulose-based materials for supercapacitors applications // J. Energy Storage – 2022. – Vol. 48. – P. 103938.

36. Song A., Huang Y., Zhong X., Cao H., Liu B., Lin Y., Wang M., et al. Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose // Electrochim. Acta – 2017. – Vol. 245. – P. 981–992.

37. Alipoori S., Torkzadeh M.M., Moghadam M.H.M., Mazinani S., Aboutalebi S.H., Sharif F. Graphene oxide: An effective ionic conductivity promoter for phosphoric acid-doped poly (vinyl alcohol) gel electrolytes // Polymer (Guildf). – 2019. – Vol. 184. – P. 121908.

38. Tleukenov Y.-T., Kalimuldina G., Arinova A., Issatayev N., Bakenov Z., Nurpeissova A. Polyacrylonitrile– Polyvinyl Alcohol-Based Composite Gel– Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries // Polymers (Basel). – 2022. – Vol. 14. – No. 23. – P. 5327.

39. Wang J., Zhao Z., Song S., Ma Q., Liu R. High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors // Polymers (Basel). – 2018. – Vol. 10. – No. 11. – P. 1179.

40. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors // Chem. Soc. Rev. – 2012. – Vol. 41. – No. 2. – P. 797–828.

41. Hou X., Pollard T.P., He X., Du L., Ju X., Zhao W., Li M., et al. “Water‐in‐Eutectogel” Electrolytes for Quasi‐SolidState Aqueous Lithium‐Ion Batteries // Adv. Energy Mater. – 2022. – Vol. 12. – No. 23. – P. 2200401.

42. Chen S., Lan R., Humphreys J., Tao S. Perchlorate Based “Oversaturated Gel Electrolyte” for an Aqueous Rechargeable Hybrid Zn–Li Battery // ACS Appl. Energy Mater. – 2020. – Vol. 3. – No. 3. – P. 2526–2536.

43. Lu W., Henry K., Turchi C., Pellegrino J. Incorporating Ionic Liquid Electrolytes into Polymer Gels for Solid-State Ultracapacitors // J. Electrochem. Soc. – 2008. – Vol. 155. – No. 5. – P. A361.

44. Rajeevan S., John S., George S.C. Polyvinylidene fluoride: A multifunctional polymer in supercapacitor applications // J. Power Sources – 2021. – Vol. 504. – P. 230037.

45. Arthi R., Jaikumar V., Muralidharan P. Development of electrospun PVdF polymer membrane as separator for supercapacitor applications // Energy Sources, Part A Recover. Util. Environ. Eff. – 2019. – P. 1–15.

46. Pazhamalai P., Mariappan V.K., Sahoo S., Kim W.Y., Mok Y.S., Kim S.-J. Free-Standing PVDF/Reduced Graphene Oxide Film for All-Solid-State Flexible Supercapacitors towards Self– Powered Systems // Micromachines – 2020. – Vol. 11. – No. 2. – P. 198.

47. Huang X., Zeng S., Liu J., He T., Sun L., Xu D., Yu X., et al. High– Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries // J. Phys. Chem. C – 2015. – Vol. 119. – No. 50. – P. 27882–27891.

48. Jamalpour S., Ghahramani M., Ghaffarian S.R., Javanbakht M. The effect of poly(hydroxyl ethyl methacrylate) on the performance of PVDF/P(MMA-co-HEMA) hybrid gel polymer electrolytes for lithium ion battery application // Polymer (Guildf). – Elsevier Ltd, 2020. – Vol. 195. – No. March. – P. 122427.

49. Peng X., Liu H., Yin Q., Wu J., Chen P., Zhang G., Liu G., et al. A zwitterionic gel electrolyte for efficient solidstate supercapacitors // Nat. Commun. – 2016. – Vol. 7. – No. 1. – P. 11782.

50. Zhang X., Kar M., Mendes T.C., Wu Y., MacFarlane D.R. Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors // Adv. Energy Mater. – 2018. – Vol. 8. – No. 15. – P. 1702702.

51. Zhao X., Wu Z., Zhang Z., Wang N., Tao C.A., Wang J., Gong H. The polymer composite electrolyte with polyethylene oxide-grafted graphene oxide as fillers toward stable highcurrent density lithium metal anodes // Mater. Res. Express – IOP Publishing, 2021. – Vol. 8. – No. 10.

52. Azizighannad S., Wang Z., Siddiqui Z., Kumar V., Mitra S. Nano carbon doped polyacrylamide gel electrolytes for high performance supercapacitors // Molecules – 2021. – Vol. 26. – No. 9. – P. 2631.

53. Liu J., Wu X., He J., Li J., Lai Y. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery // Electrochim. Acta – 2017. – Vol. 235. – P. 500–507.

54. Li W., Zhu Z., Shen W., Tang J., Yang G., Xu Z. A novel PVdF-based composite gel polymer electrolyte doped with ionomer modified graphene oxide // RSC Adv. – Royal Society of Chemistry, 2016. – Vol. 6. – No. 99. – P. 97338–97345.

55. Chen Z., Yang Y., Ma Z., Zhu T., Liu L., Zheng J., Gong X. All‐Solid‐State Asymmetric Supercapacitors with Metal Selenides Electrodes and Ionic Conductive Composites Electrolytes // Adv. Funct. Mater. – 2019. – Vol. 29. – No. 38. – P. 1904182.

56. Li H., Lv T., Sun H., Qian G., Li N., Yao Y., Chen T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte // Nat. Commun. – 2019. – Vol. 10. – No. 1. – P. 536.

57. Li W., Pang Y., Liu J., Liu G., Wang Y., Xia Y. A PEObased gel polymer electrolyte for lithium ion batteries // RSC Adv. – 2017. – Vol. 7. – No. 38. – P. 23494–23501.

58. Abdollahi S., Sadadi H., Ehsani M., Aram E. Highly efficient polymer electrolyte based on electrospun PEO/PAN/single-layered graphene oxide // Ionics (Kiel). – Springer Berlin Heidelberg, 2021. – Vol. 27. – No. 8. – P. 3477–3487.

59. Ahmad A.L., Farooqui U.R., Hamid N.A. Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF- HFP) polymer electrolyte membrane // Polymer (Guildf). – Elsevier Ltd, 2018. – Vol. 142. – P. 330–336.

60. Shanmugaraj P., Swaminathan A., Ravi R.K., Dasaiah M., Senthil Kumar P., Sakunthala A. Preparation and characterization of porous PVdF-HFP/graphene oxide composite membranes by solution casting technique // J. Mater. Sci. Mater. Electron. – Springer US, 2019. – Vol. 30. – No. 22. – P. 20079–20087.

61. Ahmad A.L., Farooqui U.R., Hamid N.A. Porous (PVDFHFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries // RSC Adv. – Royal Society of Chemistry, 2018. – Vol. 8. – No. 45. – P. 25725– 25733.

62. Xin Y., Yu Z., Soomro R.A., Sun N. Facile Synthesis of Polyacrylic Acid/Graphene Oxide Composite Hydrogel Electrolyte for High– Performance Flexible Supercapacitors // Coatings – 2023. – Vol. 13. – No. 2. – P. 382.

63. Kumar S., Yadav P.K., Prakash R., Santra A., Maiti P. Multifunctional graphene oxide implanted polyurethane ionomer gel electrolyte for quantum dots sensitized solar cell // J. Alloys Compd. – 2022. – Vol. 922. – P. 166121.


Қосымша файлдар

Рецензия

Дәйектеу үшін:


Машенцева А.А., Алманов А.Ә., Айманова А.Н., Жумабаев А.М. ЭНЕРГИЯ САҚТАУ ҚҰРЫЛҒЫЛАРЫН ӘЗІРЛЕУДЕ КӨМІРТЕКТІ НАНОМАТЕРИАЛДАР НЕГІЗІНДЕГІ ГЕЛЬ-ПОЛИМЕРЛІ ЭЛЕКТРОЛИТТЕРДІ ҚОЛДАНУ – ШАҒЫН ШОЛУ. ҚР ҰЯО жаршысы. 2023;(2):33-42. https://doi.org/10.52676/1729-7885-2023-2-33-42

For citation:


Mashentseva А.А., Almanov А.А., Aimanova А.N., Zhumabayev А.M. APPLICATION OF GEL POLYMER ELECTROLYTES BASED ON CARBON NANOMATERIALS FOR THE DEVELOPMENT OF ENERGY STORAGE DEVICES – MINI REVIEW. NNC RK Bulletin. 2023;(2):33-42. (In Russ.) https://doi.org/10.52676/1729-7885-2023-2-33-42

Қараулар: 478


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)