Preview

Вестник НЯЦ РК

Расширенный поиск

СИНТЕЗ И ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ, ЭЛЕКТРИЧЕСКИХ СВОЙСТВ НАНОПРОВОЛОК ДИОКСИДА ОЛОВА В ТРЕКОВОМ ТЕМПЛЭЙТЕ SiO2/Si

https://doi.org/10.52676/1729-7885-2024-2-65-73

Аннотация

Данная работа представляет исследование структурных, оптических и электрических характеристик нанопроволок диоксида олова (SnO2) полученных методом химического осаждения (ХО) в трековый темплэйт SiO2/Si (темплэйтный синтез). Латентные треки в слое SiO2 создавались путем облучения быстрыми тяжелыми ионами (БТИ) Xe при энергии 200 МэВ с флюенсом Ф = 108 см−2 и последующим травлением в 4% водном растворе фтористоводородной кислоты (HF). Выбранный метод ХО широко распространен для осаждения нанопроволок полупроводниковых оксидов в нанопорах SiO2. Метод ХО является экономически эффективным, так как не требует специального оборудования для осаждения нанопроволок. Для осуществления осаждения применяется раствор координационного соединения металла и восстановителя. Для анализа заполнения пор после процесса ХО, морфология поверхности образцов исследовалась с помощью сканирующего микроскопа Zeiss Crossbeam 540. Кристаллографическая структура наноструктур SnO2/SiO2/Si с заполнением нанопор SnO2 исследовали методом рентгеновской дифракции. Рентгеноструктурный анализ (РСА) проводят на рентгеновском дифрактометре Rigaku SmartLab. В результате была получена наногетероструктура SnO2-НП/SiO2/Si с орторомбической кристаллической структурой нанопроволок SnO2. Спектры фотолюминесценции (ФЛ) измерялись при возбуждении светом с длиной волны 240 нм с использованием спектрофлуориметра СМ2203 (Solar). Разложение на гауссианы спектра фотолюминесценции структур SnO2-НП/SiO2/Si, показали, что они имеют низкую интенсивность, которая обусловлена в основном наличием таких дефектов как кислородные вакансии, междоузельное олово или олово с поврежденными связями. Исследование электрических характеристик проводилось с использованием патенциостата VersaStat 3 (Ametek). Измерение ВАХ показало, что полученная наногетероструктура SnO2-НП/SiO2/Si содержит массивы p-n переходов.

Об авторах

Д. А. Джунисбекова
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

докторант, 

Астана



А. К. Даулетбекова
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

Астана



З. К. Баймуханов
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

Астана



А. Д. Акылбекова
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

Астана



Г. М. Аралбаева
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

Астана



А. Б. Базарбек
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

Астана



Ж. К. Койшыбаев
НАО «Евразийский национальный университет им. Л.Н. Гумилева»
Казахстан

Астана



Список литературы

1. Talapin D.V., Lee J.S., Kovalenko M.V. and Shevchenko E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications // Chemical reviews. – 2010. – Vol. 110. – P. 389–458. https://doi.org/10.1021/cr900137k

2. Bhattacharyya D., Singh S., Satnalika N., Khandelwal A. and Jeon S.H. Nanotechnology, big things from a tiny world: a review // International Journal of u-and e-Service, Science and Technology. – 2009. – Vol. 2. – P. 29–38.

3. Lu W., Lieber C.M. Nanoelectronics from the bottom up // Nature materials. – 2007. – Vol. 6. – P. 841–850. https://doi.org/10.1038/nmat2028

4. Jones M.R., Osberg K.D., MacFarlane R.J., Langille M.R. and Mirkin C.A. Templated techniques for the synthesis and assembly of plasmonic nanostructures // Chemical reviews. – 2011. – Vol. 111. – P. 3736–3827. https://doi.org/10.1021/cr1004452

5. Routkevitch D. et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates // The Journal of Physical Chemistry. – 1996. – Vol. 100. – P. 14037–14047. https://doi.org/10.1021/jp952910m

6. Zhang F., Zhao D. Fabrication of ordered magnetite-doped rare earth fluoride nanotube arrays by nanocrystal self-assembly // Nano Research. – 2009. – Vol. 2. – P. 292–305. https://doi.org/10.1007/s12274-009-9027-6

7. Xu D., Xu Y., Chen D., Guo G., Gui L., Tang Y. Preparation of CdS single‐crystal nanowires by electrochemically induced deposition // Advanced Materials. – 2000. – Vol. 12. – P. 520–522. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3C520::AID-ADMA520%3E3.0.CO;2-%23

8. Martin C. R. Nanomaterials: a membrane-based synthetic approach // Science. – 1994. – Vol. 266. – P. 1961–1966. https://doi.org/10.1126/science.266.5193.1961

9. Schuchert I.U., Molares M.T., Dobrev D., Vetter J., Neumann R., Martin M. Electrochemical copper deposition in etched ion track membranes: Experimental results and a qualitative kinetic model // Journal of the Electrochemical Society. – 2003. – Vol. 150. – P. C189. https://doi.org/10.1149/1.1554722

10. Demyanov S. E., Kaniukov E.Yu., Petrov A.V., Belonogov E.K., Streltsov E.A., Ivanov D.K., Ivanova Yu.A., Trautmann C., Terryn H., Petrova M., Ustarroz J., Sivakov V. On the morphology of Si/SiO 2/Ni nanostructures with swift heavy ion tracks in silicon oxide // Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. – 2014. – Vol. 8. – P. 805–813. https://doi.org/10.1134/S1027451014040326

11. SivakovV., Kaniukov E.Yu., Petrov A.V., Korolik O.V., Mazanik A.V., Bochmann A., Teichert S., Hidi I.J., Schleusener A., Cialla D., Toimil-Molares M.E., Trautmann C., Popp J., Demyanov S.E. Silver nanostructures formation in porous Si/SiO2 matrix // Journal of crystal growth. – 2014. – Vol. 400. – P. 21–26. https://doi.org/10.1016/j.jcrysgro.2014.04.024

12. Barranco A., Cotrino J., Yubero F., Espinos J.P. and Gonzalez-Elipe A.R. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. – 2004. – Vol. 22. – P. 1275–1284. https://doi.org/10.1116/1.1761072

13. Amato G., Borini S., Rossi A.M., Boarino L. and Rocchia M. Si/SiO2 nanocomposite by CVD infiltration of porous SiO2 // Physica Status Solidi (A). – 2005. – Vol. 202. – P. 1529–1532. https://doi.org/10.1002/pssa.200461172

14. Fink D. et al. Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2004. – Vol. 218. – P. 355–361. https://doi.org/10.1016/j.nimb.2003.12.083

15. Fink D., Chandra A., Alegaonkar P., Berdinsky A., Petrov A. and Sinha D. Nanoclusters and nanotubes for swift ion track technology // Radiation Effects & Defects in Solids. – 2007. – Vol. 162. – P. 151–156. https://doi.org/10.1080/10420150601132487

16. Ivanova Y.A., Ivanou D.K., Fedotov A.K., Streltsov E.A., Demyanov S.E., Petrov A.V., Kaniukov E.Y. and Fink D. Electrochemical deposition of Ni and Cu onto monocrystalline n-Si (100) wafers and into nanopores in Si/SiO 2 template // Journal of materials science. – 2007. – Vol. 42. – P. 9163–9169. https://doi.org/10.1007/s10853-007-1926-x

17. Hoppe K., Fahrner W.R., Fink D., Dhamodoran S., Petrov A., Chandra A., Saad A., Faupel F., Chakravadhanula V.S.K. and Zaporotchenko V. An ion track based approach to nano-and micro-electronics // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2008. – Vol. 266. – P. 1642–1646. https://doi.org/10.1016/j.nimb.2007.12.069

18. Musket R.G., Yoshiyama J.M., Contolini R.J. and Porter J. D. Vapor etching of ion tracks in fused silica // Journal of applied physics. – 2002. – Vol. 91. – P. 5760–5764. https://doi.org/10.1063/1.1467402

19. Milanez S.C., Varisco P., Moehlecke A., Fichtner P.P., Papaléo R.M and Eriksson J. Processing of nano-holes and pores on SiO2 thin films by MeV heavy ions // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2003. – Vol. 206. – P. 486–489.

20. Klaumünzer S. Ion tracks in quartz and vitreous silica // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2004. – Vol. 225. – P. 136–153. https://doi.org/10.1016/j.nimb.2004.05.014

21. Razpet A., Johansson A., Possnert G., Skupiński M., Hjort K. and Hallén A. Fabrication of high-density ordered nanoarrays in silicon dioxide by MeV ion track lithography // Journal of applied physics. – 2005. – Vol. 97. https://doi.org/10.1063/1.1850617

22. Jensen J., Razpet A., Skupiński M. and Possnert G.Ion track formation below 1 MeV/u in thin films of amorphous SiO2 // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2006. – Vol. 243. – P. 119–126. https://doi.org/10.1016/j.nimb.2005.07.226

23. Kluth P., Schnohr C.S., Pakarinen O.H., Djurabekova F., Sprouster D.J., Giulian R., …Toulemonde M. Fine structure in swift heavy ion tracks in amorphous SiO2 // Physical review letters. – 2008. – Vol. 101. – P. 175503. https://doi.org/10.1103/PhysRevLett.101.175503

24. Dallanora A., Marcondes T.L., Bermudes G.G., Fichtner P.F.P., Trautmann C., Toulemonde M., and Papaleo R.M. Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability // Journal of Applied Physics. – 2008. – Vol. 104. https://doi.org/10.1063/1.2957052

25. Kaniukov E.Y., Demyanov S.E. Characteristic features of electric charge transfer processes in Si/SiO2/Ni nanostructures in strong magnetic fields // Mater. Sci. – 2010. – Vol. 6. – P. 53–58.

26. Vlasukova L.A., Komarov F.F., Yuvchenko V.N., Wesch W., Wendler E., Didyk A.Y., Skuratov V.A. and Kislitsin S.B. Threshold and criterion for ion track etching in SiO2 layers grown on Si // Vacuum. – 2014. – Vol. 105. – P. 107–110. https://doi.org/10.1016/j.vacuum.2014.01.005

27. Benyagoub A., Toulemonde M. Ion tracks in amorphous silica // Journal of Materials Research. – 2015. – Vol. 30. – P. 1529–1543. https://doi.org/10.1557/jmr.2015.75

28. Kaniukov E., Bundyukova V., Kutuzau M., Yakimchuk D. Peculiarities of Formation and Characterization of SiO 2/Si Ion-Track Template // Fundamental and Applied Nano-Electromagnetics II: THz Circuits, Materials, Devices // Springer Netherlands. – 2019. – P. 41–57. https://doi.org/10.1007/978-94-024-1687-9_3

29. Vaseashta A., Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors // Science and Technology of Advanced Materials. – 2005. – Vol. 6. – P. 312–318. https://doi.org/10.1016/j.stam.2005.02.018

30. Chou J.C., Wang Y.F. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method // Sensors and Actuators B: Chemical. – 2002. – Vol. 86. – P. 58–62. https://doi.org/10.1016/S0925-4005(02)00147-8

31. Lee J.S., Sim S.K., Min B., Cho K., Kim S.W., Kim S. Structural and optoelectronic properties of SnO2 nanowires synthesized from ball-milled SnO2 powders // Journal of Crystal Growth. – 2004. – Vol. 267. – P. 145–149. https://doi.org/10.1016/j.jcrysgro.2004.03.030

32. Ying Z., Wan Q., Song Z.T., Feng S.L. Controlled synthesis of branched SnO2 nanowhiskers // Materials Letters. – 2005. – Vol. 59. – P. 1670–1672. https://doi.org/10.1016/j.matlet.2005.01.044

33. Fan Y., Liu J., Lu H., Huang P., Xu D. Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation // Electrochimica acta. – 2012. – Vol. 76. – P. 475–479. https://doi.org/10.1016/j.electacta.2012.05.067

34. Zhang H., Tan Z., Xu P., Oh K., Wu R., Shi W., Jiao Z., Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties // Journal of Nanoscience and Nanotechnology. – 2011. – Vol. 11. – P. 11114–11118. https://doi.org/10.1166/jnn.2011.3978

35. Zhang H., He Q., Zhu X., Pan D., Deng X., Jiao Z. Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties // CrystEngComm. – 2012. – Vol. 14. – P. 3169–3176. https://doi.org/10.1039/C2CE06558D

36. Yu L., Zhang L., Song H., Jiang X., Lv Y. Hierarchical SnO2 architectures: controllable growth on graphene by atmospheric pressure chemical vapour deposition and application in cataluminescence gas sensor // CrystEngComm. – 2014. – Vol. 16. – P. 3331–3340. https://doi.org/10.1039/C3CE42538J

37. Huang H., Tan O.K., Lee Y., Tran T., Tse M. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment // Applied Physics Letters. – 2005. – Vol. 87. https://doi.org/10.1063/1.2106006

38. Pan J., Huhne S.M., Shen H., Xiao L., Born P., Mader W., Mathur S. SnO2–TiO2 core–shell nanowire structures: investigations on solid state reactivity and photocatalytic behavior // The Journal of Physical Chemistry C. – 2011. – Vol. 115. – P. 17265–17269. https://doi.org/10.1021/jp201901b

39. S. Giniyatova, A. Dauletbekova, Z. Baimukhanov, L. Vlasukova, A. Akilbekov, et al. Structure, electrical properties and luminescence of ZnO nanocrystals deposited in SiO2/Si track templates // Radiation measurements. – 2019. – Vol. 125. – P. 52–56. https://doi.org/10.1016/j.radmeas.2019.04.001

40. A.K. Dauletbekova, A.Ye. Alzhanova, A.T. Akilbekov, et al. Synthesis of Si/SiO2/ZnO nanoporous materials using chemical and electrochemical deposition techniques // AIP Conference Proceedings. AIP Publishing LLC. – 2016. – Vol. 1767. – P. 020005. https://doi.org/10.1063/1.4962589

41. Dauletbekova A., Akylbekova A., Sarsekhan G., Usseinov A., Baimukhanov Z., Kozlovskyi A., Vlasukova L., Komarov F., Popov A. and Akilbekov A. Ion-track template synthesis and characterization of ZnSeO3 nanocrystals // Crystals. – 2022. – Vol. 12. – P. 817. https://doi.org/10.3390/cryst12060817

42. M. Toulemonde, A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer. Track formation in SiO2 quartz and the thermal-spike mechanism // Physical Review B. – 1994. – Vol. 49. – P. 12457. https://doi.org/10.1103/PhysRevB.49.12457

43. F.F. Komarov F.F., L.A. Vlasukova, P.V. Kuchinskyi, A.Yu. Didyk, V.A. Skuratov, N.A. Voronova. Etched track morphology in SiO2 irradiated with swift heavy ions // Lithuanian Journal of Physics. – 2009. – Vol. 49. – P. 111–115. https://doi.org/10.3952/lithjphys.49113

44. L.Vlasukova, F. Komarov, V. Yuvchenko, L. Baran, O. Milchanin, A Dauletbekova, A. Alzhanova, A. Akilbekov. Etching of latent tracks in amorphous SiO2 and Si3N4: Simulation and experiment // Vacuum. – 2016. – Vol. 129. – P. 137–141. https://doi.org/10.1016/j.vacuum.2015.12.023

45. Haines J., Léger J. M. X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: ffRelationships between structure types and implications for other rutile-type dioxides // Physical Review B. – 1997. – Vol. 55. – P. 11144. https://doi.org/10.1103/PhysRevB.55.11144

46. Shieh S.R., Kubo A., Duffy T.S., Prakapenka V.B., Shen, G. High-pressure phases in SnO2 to 117 GPa // Physical Review B. – 2006. – Vol. 73. – P. 014105. https://doi.org/10.1103/PhysRevB.73.014105

47. Gracia L., Beltran A., Andres J. Characterization of the High-Pressure Structures and Phase Transformations in SnO2 // A density functional theory study. The Journal of Physical Chemistry B. – 2007. – Vol. 111. – P. 6479–6485. https://doi.org/10.1021/jp067443v

48. Bing W., Ping X. Growth mechanism and photoluminescence of the SnO2 nanotwists on thin film and the SnO2 short nanowires on nanorods // Chinese Physics B. – 2009. – Vol. 18. – P. 324. https://doi.org/10.1088/1674-1056/18/1/053

49. E.J.H. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite and J.A. Varela. Photoluminescence in quantum-confined SnO 2 nanocrystals: evidence of free exciton decay // Applied Physics Letters. – 2004. – Vol. 84. – P. 1745–1747. https://doi.org/10.1063/1.1655693

50. Munnix S., Schmeits M. Electronic structure of tin dioxide surfaces // Physical Review B. – 1983. – Vol. 27. – P. 7624. https://doi.org/10.1103/PhysRevB.27.7624

51. Chiodini N., Paleari A., DiMartino D., Spinolo G. SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system // Applied Physics Letters. – 2002. – Vol. 81. – P. 1702–1704. https://doi.org/10.1063/1.1503154

52. Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders // Journal of Applied Physics. – 1996. – Vol. 79. – P. 7983–7990. https://doi.org/10.1063/1.362349

53. Liu Y., Yang Q., Xu C. Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism // Journal of Applied Physics. – 2008. – Vol. 104. – P. 064701. https://doi.org/10.1063/1.2980326

54. Godinho K.G., Walsh A., Watson G.W. Energetic and electronic structure analysis of intrinsic defects in SnO2 // The Journal of Physical Chemistry C. – 2009. – Vol. 113, – P. 439–448. https://doi.org/10.1021/jp807753t

55. Her Y.C., Wu J.Y., Lin Y.R., Tsai S.Y. Low-temperature growth and blue luminescence of SnO2 nanoblades // Applied physics letters. – 2006. – V. 89. – P. 043115. https://doi.org/10.1063/1.2235925

56. Rani S., Roy S., Karar N., Bhatnagar M. Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films // Solid state communications. – 2007. – Vol. 141. – P. 214–218. https://doi.org/10.1016/j.ssc.2006.10.036

57. Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders // Journal of Applied Physics. – 1996. – Vol. 79. – P. 7983–7990. https://doi.org/10.1063/1.362349

58. Bhatnagar M., Kaushik V., Kaushal A., Singh M., Mehta B. Structural and photoluminescence properties of tin oxide and tin oxide: C core–shell and alloy nanoparticles synthesised using gas phase technique // AIP Advances. – 2016. – Vol. 6. – P. 095321. https://doi.org/10.1063/1.4964313

59. Duan J., Gong J., Huang H., Zhao X., Cheng G., Yu Z., Yang, S. Multiform structures of SnO2 nanobelts // Nanotechnology. – 2007. – Vol. 18. – P. 055607. https://doi.org/10.1088/0957-4484/18/5/055607

60. Zhang, L., Ge S., Zuo Y., Zhang B., Xi L. Influence of oxygen flow rate on the morphology and magnetism of SnO2 nanostructures // The Journal of Physical Chemistry C. – 2010. – Vol. 114. – P. 7541–7547. https://doi.org/10.1021/jp9065604

61. Hu J.Q., Bando Y., Liu Q.L., Golberg D. Laser‐ablation growth and optical properties of wide and long single‐crystal SnO2 ribbons // Advanced Functional Materials. – 2003. – Vol. 13. – P. 493–496. https://doi.org/10.1002/adfm.200304327

62. Cheng B., Russell J.M., Shi, Zhang L., E.T. Samulski. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods // Journal of the American Chemical Society. – 2004. – Vol. 126. – P. 5972–5973. https://doi.org/10.1021/ja0493244


Рецензия

Для цитирования:


Джунисбекова Д.А., Даулетбекова А.К., Баймуханов З.К., Акылбекова А.Д., Аралбаева Г.М., Базарбек А.Б., Койшыбаев Ж.К. СИНТЕЗ И ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ, ЭЛЕКТРИЧЕСКИХ СВОЙСТВ НАНОПРОВОЛОК ДИОКСИДА ОЛОВА В ТРЕКОВОМ ТЕМПЛЭЙТЕ SiO2/Si. Вестник НЯЦ РК. 2024;(2):65-73. https://doi.org/10.52676/1729-7885-2024-2-65-73

For citation:


Junisbekova D.A., Dauletbekova A.K., Baimukhanov Z.K., Akylbekova A.D., Aralbayeva G.M., Bazarbek A.B., Koishybayeva Zh.K. SYNTHESIS AND STUDY OF OPTICAL, ELECTRICAL PROPERTIES OF TIN DIOXIDE NANOWIRES IN A SiO2/Si TRACK TEMPLATE. NNC RK Bulletin. 2024;(2):65-73. (In Kazakh) https://doi.org/10.52676/1729-7885-2024-2-65-73

Просмотров: 334


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)