LUMINESCENCE FEATURES OF CsI:Tl CRYSTALS IRRADIATED WITH FAST Xe IONS
https://doi.org/10.52676/1729-7885-2024-4-12-20
Abstract
Scintillation crystals CsI are widely used in nuclear physics and high-energy physics experiments. This work presents the study and analysis of luminescent properties of CsI:T1 crystals induced by irradiation with 230 MeV ¹³²Xe ions up to fluences (1·10¹¹–1·10¹⁴ ions/cm²) at 295 K (DC-60 accelerator, Astana, Kazakhstan). The research was conducted using optical absorption and luminescence spectroscopy methods, as well as time-resolved optically stimulated luminescence. The surface was studied using atomic force microscopy. A decrease in the intensity of the scintillation emission band at 553 nm and its light yield with increasing fluence was established. The conversion efficiency of the studied samples does not depend on fluence. Therefore, radiation damage does not affect the conversion efficiency of the CsI:Tl crystal. Track formation does not reduce the conversion efficiency of the CsI:Tl crystal but participates in the scintillation process through energy reabsorption from Tl⁺ centers, leading to light yield degradation.
About the Authors
A. T. AkilbekovKazakhstan
Astana
G. M. Baubekova
Kazakhstan
Astana
R. N. Asylbaev
Kazakhstan
Pavlodar
A. K. Dauletbekova
Kazakhstan
Astana
G. M. Aralbayeva
Kazakhstan
Astana
Zh. T. Karipbayev
Kazakhstan
Astana
K. Burkanova
Kazakhstan
Astana
References
1. Trefilova L. N. et al. Concentration dependence of the light yield and energy resolution of NaI: Tl and CsI: Tl crystals excited by gamma, soft X-rays and alpha particles // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2002. – Vol. 486. – No. 1–2. – P. 474–481. https://doi.org/10.1016/S0168-9002(02)00756-8
2. Gramegna F., Abbondanno U., Andreano A., Bassini R., Bonutti F., Bruno M., Casini G., D'Agostino M., Manzin G., Margagliotti G.V., Mastinu P.F., Milazzo P.M., Moroni A., Squarcini M., Tonetto F., Vannini G., Vannucci L. A telescope with microstrip gas chambers for the detection of charged products in heavy-ion reactions // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1997. – Vol. 389. – No. 3. – P. 474–478. https://doi.org/10.1016/S0168-9002(96)01212-0
3. Zazubovich S. Physics of halide scintillators // Radiation Measurements. – 2001. – Vol. 33. – No. 5. – P. 699–704. https://doi.org/10.1016/S1350-4487(01)00086-5
4. Popov A. I., Balanzat E. F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2000. – Vol. 166. – P. 545–549. https://doi.org/10.1016/S0168-583X(99)00789-2
5. Yakovlev V., Trefilova L., Alekseev V. [et al.] Influence of color centers on the luminescent response of radiationdamaged CsI:Tl crystal // Functional Materials. 2018. – Vol. 25. – No. 1. – Р. 13–20
6. Yakovlev V., Trefilova L., Lebedynskiy A. [et al.] Peculiarities of intrinsic luminescence excited by pulsed electron beam in CsI and CsI: CO3, // Journal of Luminescence. – 2017. – Vol. 190. – P. 267–271
7. Ren Guo-Hao, Song Zhao-Hui, ZHang Zi-Chuan, ZHang Kan, Yang Fan, LI Huan-Ying, CHen Xiao-Feng. Luminescence and Decay Time Properties of Pure CsI Crystals[J] // Journal of Inorganic Materials. – 2017, – Vol. 32(2). – Р. 169–174.
8. Sajjad Shahmaleki, Faezeh Rahmani. Investigation on the scintillation characteristics of CsI(Tl) crystal with Eu dopant: Monte Carlo simulation using GATE code and experimental results // Optik. – Vol. 201. – 2020. – Р. 163492
9. A. Knyazev, J. Park, P. Golubev, J. Cederkäll, et all. Simulations of light collection in long tapered CsI (Tl) scintillators using real crystal surface data and comparisons to measurement // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment. – Vol. 1003. – 2021. – Р. 165302
10. Suzart K.F. et al. Suzart K.F., Velo, A.F., Hamada M. M., Pereira M.C.C., Mesquita C.H. Characterization of the CsI(Tl) Crystalline Scintillating Detector Produced at IPEBraz // J. Rad. Sci. – Vol. 09-01A. – 2021. – Р. 01–13
11. Amolo G. O., Erasmus R.M., Comins J.D., Derry T.E. Raman and optical absorption studies of proton bombarded CsI // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2006. – Vol. 250. – No. 1–2. – P. 359–362. https://doi.org/10.1016/j.nimb.2006.04.169
12. Chowdhury M., Watts S.J., Imrie D.C., McKemey A.K., Holmes-Siedle A.G. Studies of radiation tolerance and optical absorption bands of CsI (Tl) crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1999. – Vol. 432. – No. 1. – P. 147–156. https://doi.org/10.1016/S0168-9002(99)00471-4
13. Hamada M. M. et al. Radiation damage of CsI (Tl) scintillators: blocking of energy transfer process of Vk centers to Tl+ activators // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2002. – Vol. 486. – No. 1–2. – P. 330–335. https://doi.org/10.1016/S0168-9002(02)00729-5
14. Quaranta A. Recent developments of ion beam induced luminescence: radiation hardness study of thin film plastic scintillators // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2005. – Vol. 240. – No. 1–2. – P. 117-123. https://doi.org/10.1016/j.nimb.2005.06.098
15. Brecher C., Lempicki A., Miller S.R., Glodo J., Ovechkina E.E., Gaysinskiy V., Nagarkar V.V., Bartram R.H. Suppression of afterglow in CsI: Tl by codoping with Eu2+—I: Experimental // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2006. – Vol. 558. – No. 2. – P. 450–457. https://doi.org/10.1016/j.nima.2005.11.119
16. Fujiwara M. et al. Ion-induced luminescence of silica glasses // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 1996. – Vol. 116. – No. 1-4. – P. 536–541. https://doi.org/10.1016/0168-583X(96)00103-6
17. Ishii M., Kobayashi M. Single crystals for radiation detectors // Progress in crystal growth and characterization of materials. – 1992. – V. 23. – P. 245-311. https://doi.org/10.1016/0960-8974(92)90025-L
18. Agulló-López F. et al. Spectroscopic techniques to investigate aggregation and precipitation of cation impurities in alkali halides: application to impurity hardening and irradiation sensitivity // Progress in Materials Science. – 1986. – Vol. 30. – No. 4. – P. 187–286.
19. Johnson R. A., Orlov A. N. (ed.). Physics of radiation effects in crystals. – Elsevier, 2012. ISBN: 9780444568038 Elsevier Science Publishers B.V., 1986. – Vol. 13. – P. 723.
20. Itoh N., Tanimura K. Formation of interstitial-vacancy pairs by electronic excitation in pure ionic crystals // Journal of Physics and Chemistry of Solids. – 1990. – P. 51. – No. 7. – P. 717–735. https://doi.org/10.1016/0022-3697(90)90145-6
21. Bobbink G. J. et al. Study of radiation damage to long BGO crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1984. – Vol. 227. – No. 3. – P. 470–477. https://doi.org/10.1016/0168-9002(84)90203-1
22. Dauletbekova A., Elango A. Conversion of F‐HA Pairs into α‐IA Pairs in KBr: Li and KBr: Na X‐Rayed at 80 K // Physica Status Solidi (b). – 1981. – Vol. 108. – No. 2. – P. 299–305. https://doi.org/10.1002/pssb.2221080202
23. Agulló-López F. et al. Spectroscopic techniques to investigate aggregation and precipitation of cation impurities in alkali halides: application to impurity hardening and irradiation sensitivity // Progress in Materials Science. – 1986. – Vol. 30. – No. 4. – P. 187– 286. https://doi.org/10.1016/0079-6425(86)90006-X
24. Johnson R. A., Orlov A. N. (ed.). Physics of radiation effects in crystals. – Elsevier, 2012. ISBN: 9780444568038 Elsevier Science Publishers B.V., 1986. – Vol. 13. – P. 723.
25. Itoh N., Tanimura K. Formation of interstitial-vacancy pairs by electronic excitation in pure ionic crystals // Journal of Physics and Chemistry of Solids. – 1990. – V. 51. – №. 7. – P. 717–735. https://doi.org/10.1016/0022-3697(90)90145-6
26. Bobbink G. J. et al. Study of radiation damage to long BGO crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1984. – Vol. 227. – No. 3. – P. 470–477. https://doi.org/10.1016/0168-9002(84)90203-1
27. Bieler C. et al. Radiation damage of BGO and CsI (Tl) crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1985. – Vol. 234. – No. 3. – P. 435–442. https://doi.org/10.1016/0168-9002(85)90988-X
28. Schlögl S., Spitzer H., Wittenburg K. Radiation damage of CsI (Tl) crystals in a long term exposure at PETRA // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1985. – Vol. 242. – No. 1. – P. 89–94. https://doi.org/10.1016/0168-9002(85)90891-5
29. Kobayashi M., Sakuragi S. Radiation damage of CsI (Tl) crystals above 103 rad // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1987. – Vol. 254. – No. 2. – P. 275–280. https://doi.org/10.1016/0168-9002(87)90675-9
30. Woody C. L. et al. Readout techniques and radiation damage of undoped cesium iodide // IEEE Transactions on Nuclear Science. – 1990. – Vol. 37. – No. 2. – P. 492–499. https://doi.org/10.1109/23.106667
31. Woody C. L. et al. Radiation damage in undoped CsI and CsI (Tl) // IEEE transactions on nuclear science. – 1992. – Vol. 39. – No. 4. – P. 524–531. https://doi.org/10.1109/23.159659
32. Kobayashi M. et al. Radiation hardness of undoped CsI crystals against high energy protons // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1993. – Vol. 328. – No. 3. – P. 501–505. https://doi.org/10.1016/0168-9002(93)90666-6
33. Wei Z., Zhu R. A study on undoped CsI crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1993. – Vol. 326. – No. 3. – P. 508–512. https://doi.org/10.1016/0168-9002(93)90852-9
34. Kobayashi M., Sakuragi S. Radiation damage of CsI (Tl) crystals above 103 rad // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1987. – Vol. 254. – No. 2. – P. 275–280. https://doi.org/10.1016/0168-9002(87)90675-9
35. Bobbink G. J. et al. Study of radiation damage to long BGO crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1984. – Vol. 227. – No. 3. – P. 470–477. https://doi.org/10.1016/0168-9002(84)90203-1
36. Kobayashi M., Sakuragi S. Radiation damage of CsI (Tl) crystals above 103 rad // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1987. – Vol. 254. – No. 2. – P. 275–280. https://doi.org/10.1016/0168-9002(87)90675-9
37. Woody C. L. et al. Readout techniques and radiation damage of undoped cesium iodide // IEEE Transactions on Nuclear Science. – 1990. – Vol. 37. – No. 2. – P. 492–499. https://doi.org/10.1109/23.106667
38. Woody C. L. et al. Radiation damage in undoped CsI and CsI (Tl) // IEEE transactions on nuclear science. – 1992. – Vol. 39. – No. 4. – P. 524–531. https://doi.org/10.1109/23.159659
39. Kobayashi M. et al. Radiation hardness of undoped CsI crystals against high energy protons // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1993. – Vol. 328. – No. 3. – P. 501–505. https://doi.org/10.1016/0168-9002(93)90666-6
40. Wei Z., Zhu R. A study on undoped CsI crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1993. – Vol. 326. – No. 3. – P. 508–512. https://doi.org/10.1016/0168-9002(93)90852-9
41. Bieler C. et al. Radiation damage of BGO and CsI (Tl) crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1985. – Vol. 234. – No. 3. – P. 435–442. https://doi.org/10.1016/0168-9002(85)90988-X
42. Kobayashi M. et al. Radiation hardness of undoped CsI crystals against high energy protons // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1993. – Vol. 328. – No. 3. – P. 501–505. https://doi.org/10.1016/0168-9002(93)90666-6
43. Popov A. I., Balanzat E. F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2000. – Vol. 166. – P. 545–549. https://doi.org/10.1016/S0168-583X(99)00789-2
44. Quaranta A. et al. Radiation damage mechanisms in CsI (Tl) studied by ion beam induced luminescence // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2008. – Vol. 266. – No. 12–13. – P. 2723–2728. https://doi.org/10.1016/j.nimb.2008.03.195
45. Ziegler J. F., Ziegler M. D., Biersack J. P. SRIM–The stopping and range of ions in matter (2010) // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2010. – Vol. 268. – No. 11–12. – P. 1818–1823.
46. Popov A. I., Balanzat E. F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2000. – Vol. 166. – P. 545–549. https://doi.org/10.1016/S0168-583X(99)00789-2
47. Globus M. E., Grinyov B. V. On the mechanism of gamma-irradiation induced changes in the conversion efficiency of Csl (Tl) scintillators // Functional materials. – 1996. – Vol. 3. – No. 2. – P. 231–232. https://doi.org/10.1016/j.radmeas.2007.02.034
48. Ratner M., Grinyov B., Ratner A. Manifestations of charged lattice defects in excitonic luminescence and control over properties of wide-band scintillation crystals //Radiation measurements. – 2004. – Vol. 38. – No. 4–6. – P. 627–632. https://doi.org/10.1016/j.radmeas.2004.02.001
49. Hamada M. M. et al. Radiation damage of CsI (Tl) scintillators: blocking of energy transfer process of Vk centers to Tl+ activators // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2002. – Vol. 486. – No. 1–2. – P. 330–335. https://doi.org/10.1016/S0168-9002(02)00729-5
50. Shpilinskaya L. N. et al. Radiation damage factors of CsI (Tl) crystals. – 2000.
51. Beylin D. M. et al. Study of the radiation hardness of CsI (Tl) scintillation crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2005. – Vol. 541. – No. 3. – P. 501–515. https://doi.org/10.1016/j.nima.2004.11.023
52. Chowdhury M. A. H. et al. Studies of radiation tolerance and optical absorption bands of CsI (Tl) crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1999. – Vol. 432. – No. 1. – P. 147–156. https://doi.org/10.1016/S0168-9002(99)00471-4
53. Zhu R. Radiation damage in scintillating crystals // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 1998. – Vol. 413. – No. 2–3. – P. 297–311. https://doi.org/10.1016/S0168-9002(98)00498-7
54. Longo S., Roney J. M. Radiation hardness of 30 cm long CsI (Tl) crystals // Journal of Instrumentation. – 2016. – Vol. 11. – No. 08. – P. P08017. https://doi.org/10.1088/1748-0221/11/08/P08017
55. Globus M. E., Grinyov B. V. On the mechanism of gamma-irradiation induced changes in the conversion efficiency of Csl(Tl) scintillators // Functional materials. – 1996. – Vol. 3. – No. 2. – P. 231–232.
56. Wu Z., Yang B., Townsend P. D. Radioluminescence and thermoluminescence properties of X-ray-irradiated pure CsI // Journal of luminescence. – 2008. – Vol. 128. – No. 7. – P. 1191–1196. https://doi.org/10.1016/j.jlumin.2007.11.091
57. Kan'no K., Tanaka K., Hayashi T. New aspects of intrinsic luminescence in alkali halides // Atomic Processes Induced By Electronic Excitation In Non-Metallic SolidsProceedings Of The Us-japan Seminar. – World Scientific, 1990. – P. 253. https://doi.org/10.1142/9789814540872
Review
For citations:
Akilbekov A.T., Baubekova G.M., Asylbaev R.N., Dauletbekova A.K., Aralbayeva G.M., Karipbayev Zh.T., Burkanova K. LUMINESCENCE FEATURES OF CsI:Tl CRYSTALS IRRADIATED WITH FAST Xe IONS. NNC RK Bulletin. 2024;(4):12-20. (In Russ.) https://doi.org/10.52676/1729-7885-2024-4-12-20