Preview

Вестник НЯЦ РК

Расширенный поиск

РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ НА ОСНОВЕ MIL-101(Cr) МЕТАЛЛ-ОРГАНИЧЕСКИХ КАРКАСОВ: МИНИОБЗОР

https://doi.org/10.52676/1729-7885-2025-2-132-141

Аннотация

MIL-101(Cr) — один из наиболее хорошо изученных металлоорганических каркасов (МОК) на основе хрома, состоящий из иона металлического хрома и лиганда терефталевой кислоты. Уникальные физико-химические свойства данного МОК (сверхвысокая удельная площадь поверхности, размер пор, термическая, химическая стабильность и т.д.)  обеспечивают ему широкий спектр применения в различных областях современного материаловедения. Благодаря содержанию в структуре ненасыщенных кислотных центров Льюиса, MIL-101(Cr) может быть легко модифицирован, причем в большинстве случаев, производные демонстрируют улучшенные характеристики по сравнению с исходным МОК. В обзоре приводятся сведения об основных напрвления практического применения MIL-101(Cr) в адсорбции различных классов соединений из водных растворов, хранении и разделении газов, а также в катализе.

Об авторах

А. Н. Алимханова
РГП «Институт ядерной физики» МЭ РК; Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

Алматы

Астана



С. Р. Ракишева
РГП «Институт ядерной физики» МЭ РК; Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

Алматы

Астана



А. А. Машенцева
РГП «Институт ядерной физики» МЭ РК; Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

Алматы

Астана



Ф. У. Абуова
Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

Астана



Д. Т. Нурпейсова
РГП «Институт ядерной физики» МЭ РК; Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

Алматы

Астана



Список литературы

1. Zorainy M.Y. et al. Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications // Journal of Materials Chemistry A. – 2021. – Vol. 9, No. 39. – P. 22159–22217.

2. Zou M., Dong M., Zhao T. Advances in Metal-Organic Frameworks MIL-101(Cr) // International Journal of Molecular Sciences. – 2022. – Vol. 23, No. 16. – P. 9396.

3. Chen C. et al. Surface engineering of a chromium metalorganic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites // Journal of Colloid and Interface Science. – 2018. – Vol. 521. – P. 91–101.

4. Zhao T. et al. Synthesis of stable hierarchical MIL- 101(Cr) with enhanced catalytic activity in the oxidation of indene // Catalysts. – 2018. – Vol. 8, No. 9.

5. Zhang J.-Y. et al. Adsorption of Uranyl ions on Aminefunctionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and Xray Absorption Spectroscopy Studies // Scientific Reports. – 2015. – Vol. 5, No. 1. – P. 13514.

6. Serra-Crespo P. et al. Synthesis and characterization of an amino functionalized MIL-101(Al): Separation and catalytic properties // Chemistry of Materials. – 2011. – Vol. 23, No. 10. – P. 2565–2572.

7. Li Z. et al. Adsorption behavior of arsenicals on MIL- 101(Fe): The role of arsenic chemical structures // Journal of Colloid and Interface Science. – Elsevier Inc., 2019. – Vol. 554. – P. 692–704.

8. Hong D.Y. et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis // Advanced Functional Materials. – 2009. – Vol. 19, No. 10.

9. Mutyala S. et al. CO2 capture and adsorption kinetic study of amine-modified MIL-101 (Cr) // Chemical Engineering Research and Design. – 2019. – Vol. 143.

10. Tang Y. et al. Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of bisphenol A // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2020. – Vol. 596.

11. Liu Q. et al. Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration conditions and influence of flue gas contaminants // Scientific Reports. – 2013. – Vol. 3. – P. 1–6.

12. Chong K.C. et al. Solvent-Free Synthesis of MIL-101(Cr) for CO2 Gas Adsorption: The Effect of Metal Precursor and Molar Ratio // Sustainability (Switzerland). – 2022. – Vol. 14, No. 3. – P. 1–12.

13. Steenhaut T., Filinchuk Y., Hermans S. Aluminium-based MIL-100(Al) and MIL-101(Al) metal-organic frameworks, derivative materials and composites: synthesis, structure, properties and applications // Journal of Materials Chemistry A. – 2021. – Vol. 9, No. 38.

14. Jia D. et al. MIL-101(Fe) Metal-Organic Framework Nanoparticles Functionalized with Amino Groups for Cr(VI) Capture // ACS Applied Nano Materials. – 2023. – Vol. 6, No. 8.

15. Rallapalli P.B.S. et al. HF-free synthesis of MIL-101(Cr) and its hydrogen adsorption studies // Environmental Progress and Sustainable Energy. – 2016. – Vol. 35, No. 2.

16. Sheikh Alivand M. et al. Synthesis of a modified HF-free MIL-101(Cr) nanoadsorbent with enhanced H2S/CH4, CO2/CH4, and CO2/N2 selectivity // Journal of Environmental Chemical Engineering. – 2019. – Vol. 7, No. 2.

17. Châu V.T.T., Đức H.V. a Study on Hydrothermal Synthesis of Metal–Organic Framework Mil-101 // Hue University Journal of Science: Natural Science. – 2017. – Vol. 126, No. 1C. – P. 21.

18. Yang L.T. et al. Rapid hydrothermal synthesis of MIL- 101(Cr) metal-organic framework nanocrystals using expanded graphite as a structure-directing template // Inorganic Chemistry Communications. – Elsevier B.V., 2013. – Vol. 35. – P. 265–267.

19. Soltanolkottabi F. et al. Introducing a dual-step procedure comprising microwave and electrical heating stages for the morphology-controlled synthesis of chromium-benzene dicarboxylate, MIL-101(Cr), applicable for CO2 adsorption // Journal of Environmental Management. – Elsevier, 2019. – Vol. 250, No. August. – P. 109416.

20. Pourebrahimi S., Kazemeini M. A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: Effect of synthetic method // Inorganica Chimica Acta. – Elsevier B.V., 2018. – Vol. 471. – P. 513–520.

21. Zhao Z. et al. Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation // Industrial and Engineering Chemistry Research. – 2011. – Vol. 50, No. 4.

22. Jhung S.H. et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability // Advanced Materials. – 2007. – Vol. 19, No. 1.

23. Soltanolkottabi F. et al. The effect of reaction mixture movement on the performance of chromium-benzenedicarboxylate, MIL-101(Cr), applicable for CO2 adsorption through a new circulating solvothermal synthesis process // Journal of the Iranian Chemical Society. – Springer Berlin Heidelberg, 2020. – Vol. 17, No. 1. – P. 17–24.

24. Llewellyn P.L. et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101 // Langmuir. – 2008. – Vol. 24, No. 14.

25. Liu K. et al. Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal–Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments // Environmental Science & Technology. – 2015. – Vol. 49, No. 14. – P. 8657–8665.

26. Nikseresht A., Ghoochi F., Mohammadi M. Postsynthetic Modification of Amine-Functionalized MIL-101(Cr) Metal-Organic Frameworks with an EDTA-Zn(II) Complex as an Effective Heterogeneous Catalyst for Hantzsch Synthesis of Polyhydroquinolines // ACS Omega. – 2024. – Vol. 9, No. 26. – P. 28114–28128.

27. Yoo D.K., Abedin Khan N., Jhung S.H. Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with increased capacity and selectivity by polyaniline introduction // Journal of CO2 Utilization. – Elsevier, 2018. – Vol. 28, No. August. – P. 319–325.

28. Quan X. et al. Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions // Dalton Transactions. – 2019. – Vol. 48, No. 16.

29. Xu W. et al. Modulation of MIL-101(Cr) morphology and selective removal of dye from water // Journal of the Iranian Chemical Society. – 2021. – Vol. 18, No. 1.

30. Jiang D. et al. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2via a tandem diazotisation process // Chemical Communications. – 2012. – Vol. 48, No. 99. – P. 12053.

31. Modrow A. et al. Introducing a photo-switchable azofunctionality inside Cr-MIL-101-NH2 by covalent postsynthetic modification // Dalton Transactions. – 2012. – Vol. 41, No. 28. – P. 8690–8696.

32. Bernt S. et al. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid // Chemical Communications. – 2011. – Vol. 47, No. 10. – P. 2838–2840.

33. Du J. et al. Enhanced proton conductivity of metal organic framework at low humidity by improvement in water retention // Journal of Colloid and Interface Science. – Elsevier Inc., 2020. – Vol. 573. – P. 360–369.

34. Sharma P., Shahi V.K. Assembly of MIL-101(Cr)- sulphonated poly(ether sulfone) membrane matrix for selective electrodialytic separation of Pb2+ from mono- /bi-valent ions // Chemical Engineering Journal. – 2020. – Vol. 382.

35. Wickenheisser M., Janiak C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2- hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications // Microporous and Mesoporous Materials. – 2015. – Vol. 204, No. C.

36. Pham X.N. et al. Designing a novel heterostructure AgInS2@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation // Nanoscale Advances. – 2022. – Vol. 4, No. 17.

37. Sarmah M.K. et al. Sustainable hydrogen generation and storage – a review // RSC Advances. – 2023. – Vol. 13, No. 36. – P. 25253–25275.

38. Mulky L. et al. An overview of hydrogen storage technologies – Key challenges and opportunities // Materials Chemistry and Physics. – 2024. – Vol. 325. – P. 129710.

39. Yue M. et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges // Renewable and Sustainable Energy Reviews. – 2021. – Vol. 146. – P. 111180.

40. Yu Z. et al. Hydrogen adsorption and kinetics in MIL- 101(Cr) and hybrid activated carbon-MIL-101(Cr) materials // International Journal of Hydrogen Energy. – 2017. – Vol. 42, No. 12. – P. 8021–8031.

41. Prasanth K.P. et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework // International Journal of Hydrogen Energy. – 2011. – Vol. 36, No. 13.

42. Karikkethu Prabhakaran P., Deschamps J. Doping activated carbon incorporated composite MIL-101 using lithium: Impact on hydrogen uptake // Journal of Materials Chemistry A. – 2015. – Vol. 3, No. 13.

43. Kayal S., Chakraborty A. Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture // Chemical Engineering Journal. – 2018. – Vol. 334. – P. 780–788.

44. Tiow K. IMECE2015-50751. – 2017. – Vol. 101. – P. 2015–2018.

45. Lee Y.R. et al. Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101 // ACS Applied Materials and Interfaces. – 2018. – Vol. 10, No. 28. – P. 23918–23927. 46. Fang Y. et al. Enhanced adsorption of rubidium ion by a phenol@MIL-101(Cr) composite material // Microporous and Mesoporous Materials. – 2017. – Vol. 251. – P. 51– 57.

46. Lim C., Lin S., Yun Y. Jo ur na l P // Journal of Hazardous Materials. – Elsevier B.V., 2019. – Vol. 101, No. Ii. – P. 121689.

47. Bai Z.Q. et al. Introduction of amino groups into acidresistant MOFs for enhanced U(vi) sorption // Journal of Materials Chemistry A. – 2015. – Vol. 3, No. 2.

48. Zhuang H. et al. Vapor Deposition-Prepared MIL- 100(Cr)- And MIL-101(Cr)-Supported Iron Catalysts for Effectively Removing Organic Pollutants from Water // ACS Omega. – 2021. – Vol. 6, No. 39.


Рецензия

Для цитирования:


Алимханова А.Н., Ракишева С.Р., Машенцева А.А., Абуова Ф.У., Нурпейсова Д.Т. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ НА ОСНОВЕ MIL-101(Cr) МЕТАЛЛ-ОРГАНИЧЕСКИХ КАРКАСОВ: МИНИОБЗОР. Вестник НЯЦ РК. 2025;(2):132-141. https://doi.org/10.52676/1729-7885-2025-2-132-141

For citation:


Alimkhanova A.N., Rakisheva S.R., Mashentseva A.A., Abuova F.U., Nurpeisova D.T. DEVELOPMENT OF FUNCTIONAL MATERIALS BASED ON MIL-101(Cr) METAL-ORGANIC FRAMEWORKS: A MINI REVIEW. NNC RK Bulletin. 2025;(2):132-141. (In Russ.) https://doi.org/10.52676/1729-7885-2025-2-132-141

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)