РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ НА ОСНОВЕ MIL-101(Cr) МЕТАЛЛ-ОРГАНИЧЕСКИХ КАРКАСОВ: МИНИОБЗОР
https://doi.org/10.52676/1729-7885-2025-2-132-141
Аннотация
MIL-101(Cr) — один из наиболее хорошо изученных металлоорганических каркасов (МОК) на основе хрома, состоящий из иона металлического хрома и лиганда терефталевой кислоты. Уникальные физико-химические свойства данного МОК (сверхвысокая удельная площадь поверхности, размер пор, термическая, химическая стабильность и т.д.) обеспечивают ему широкий спектр применения в различных областях современного материаловедения. Благодаря содержанию в структуре ненасыщенных кислотных центров Льюиса, MIL-101(Cr) может быть легко модифицирован, причем в большинстве случаев, производные демонстрируют улучшенные характеристики по сравнению с исходным МОК. В обзоре приводятся сведения об основных напрвления практического применения MIL-101(Cr) в адсорбции различных классов соединений из водных растворов, хранении и разделении газов, а также в катализе.
Об авторах
А. Н. АлимхановаКазахстан
Алматы
Астана
С. Р. Ракишева
Казахстан
Алматы
Астана
А. А. Машенцева
Казахстан
Алматы
Астана
Ф. У. Абуова
Казахстан
Астана
Д. Т. Нурпейсова
Казахстан
Алматы
Астана
Список литературы
1. Zorainy M.Y. et al. Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications // Journal of Materials Chemistry A. – 2021. – Vol. 9, No. 39. – P. 22159–22217.
2. Zou M., Dong M., Zhao T. Advances in Metal-Organic Frameworks MIL-101(Cr) // International Journal of Molecular Sciences. – 2022. – Vol. 23, No. 16. – P. 9396.
3. Chen C. et al. Surface engineering of a chromium metalorganic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites // Journal of Colloid and Interface Science. – 2018. – Vol. 521. – P. 91–101.
4. Zhao T. et al. Synthesis of stable hierarchical MIL- 101(Cr) with enhanced catalytic activity in the oxidation of indene // Catalysts. – 2018. – Vol. 8, No. 9.
5. Zhang J.-Y. et al. Adsorption of Uranyl ions on Aminefunctionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and Xray Absorption Spectroscopy Studies // Scientific Reports. – 2015. – Vol. 5, No. 1. – P. 13514.
6. Serra-Crespo P. et al. Synthesis and characterization of an amino functionalized MIL-101(Al): Separation and catalytic properties // Chemistry of Materials. – 2011. – Vol. 23, No. 10. – P. 2565–2572.
7. Li Z. et al. Adsorption behavior of arsenicals on MIL- 101(Fe): The role of arsenic chemical structures // Journal of Colloid and Interface Science. – Elsevier Inc., 2019. – Vol. 554. – P. 692–704.
8. Hong D.Y. et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis // Advanced Functional Materials. – 2009. – Vol. 19, No. 10.
9. Mutyala S. et al. CO2 capture and adsorption kinetic study of amine-modified MIL-101 (Cr) // Chemical Engineering Research and Design. – 2019. – Vol. 143.
10. Tang Y. et al. Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of bisphenol A // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2020. – Vol. 596.
11. Liu Q. et al. Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration conditions and influence of flue gas contaminants // Scientific Reports. – 2013. – Vol. 3. – P. 1–6.
12. Chong K.C. et al. Solvent-Free Synthesis of MIL-101(Cr) for CO2 Gas Adsorption: The Effect of Metal Precursor and Molar Ratio // Sustainability (Switzerland). – 2022. – Vol. 14, No. 3. – P. 1–12.
13. Steenhaut T., Filinchuk Y., Hermans S. Aluminium-based MIL-100(Al) and MIL-101(Al) metal-organic frameworks, derivative materials and composites: synthesis, structure, properties and applications // Journal of Materials Chemistry A. – 2021. – Vol. 9, No. 38.
14. Jia D. et al. MIL-101(Fe) Metal-Organic Framework Nanoparticles Functionalized with Amino Groups for Cr(VI) Capture // ACS Applied Nano Materials. – 2023. – Vol. 6, No. 8.
15. Rallapalli P.B.S. et al. HF-free synthesis of MIL-101(Cr) and its hydrogen adsorption studies // Environmental Progress and Sustainable Energy. – 2016. – Vol. 35, No. 2.
16. Sheikh Alivand M. et al. Synthesis of a modified HF-free MIL-101(Cr) nanoadsorbent with enhanced H2S/CH4, CO2/CH4, and CO2/N2 selectivity // Journal of Environmental Chemical Engineering. – 2019. – Vol. 7, No. 2.
17. Châu V.T.T., Đức H.V. a Study on Hydrothermal Synthesis of Metal–Organic Framework Mil-101 // Hue University Journal of Science: Natural Science. – 2017. – Vol. 126, No. 1C. – P. 21.
18. Yang L.T. et al. Rapid hydrothermal synthesis of MIL- 101(Cr) metal-organic framework nanocrystals using expanded graphite as a structure-directing template // Inorganic Chemistry Communications. – Elsevier B.V., 2013. – Vol. 35. – P. 265–267.
19. Soltanolkottabi F. et al. Introducing a dual-step procedure comprising microwave and electrical heating stages for the morphology-controlled synthesis of chromium-benzene dicarboxylate, MIL-101(Cr), applicable for CO2 adsorption // Journal of Environmental Management. – Elsevier, 2019. – Vol. 250, No. August. – P. 109416.
20. Pourebrahimi S., Kazemeini M. A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: Effect of synthetic method // Inorganica Chimica Acta. – Elsevier B.V., 2018. – Vol. 471. – P. 513–520.
21. Zhao Z. et al. Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation // Industrial and Engineering Chemistry Research. – 2011. – Vol. 50, No. 4.
22. Jhung S.H. et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability // Advanced Materials. – 2007. – Vol. 19, No. 1.
23. Soltanolkottabi F. et al. The effect of reaction mixture movement on the performance of chromium-benzenedicarboxylate, MIL-101(Cr), applicable for CO2 adsorption through a new circulating solvothermal synthesis process // Journal of the Iranian Chemical Society. – Springer Berlin Heidelberg, 2020. – Vol. 17, No. 1. – P. 17–24.
24. Llewellyn P.L. et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101 // Langmuir. – 2008. – Vol. 24, No. 14.
25. Liu K. et al. Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal–Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments // Environmental Science & Technology. – 2015. – Vol. 49, No. 14. – P. 8657–8665.
26. Nikseresht A., Ghoochi F., Mohammadi M. Postsynthetic Modification of Amine-Functionalized MIL-101(Cr) Metal-Organic Frameworks with an EDTA-Zn(II) Complex as an Effective Heterogeneous Catalyst for Hantzsch Synthesis of Polyhydroquinolines // ACS Omega. – 2024. – Vol. 9, No. 26. – P. 28114–28128.
27. Yoo D.K., Abedin Khan N., Jhung S.H. Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with increased capacity and selectivity by polyaniline introduction // Journal of CO2 Utilization. – Elsevier, 2018. – Vol. 28, No. August. – P. 319–325.
28. Quan X. et al. Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions // Dalton Transactions. – 2019. – Vol. 48, No. 16.
29. Xu W. et al. Modulation of MIL-101(Cr) morphology and selective removal of dye from water // Journal of the Iranian Chemical Society. – 2021. – Vol. 18, No. 1.
30. Jiang D. et al. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2via a tandem diazotisation process // Chemical Communications. – 2012. – Vol. 48, No. 99. – P. 12053.
31. Modrow A. et al. Introducing a photo-switchable azofunctionality inside Cr-MIL-101-NH2 by covalent postsynthetic modification // Dalton Transactions. – 2012. – Vol. 41, No. 28. – P. 8690–8696.
32. Bernt S. et al. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid // Chemical Communications. – 2011. – Vol. 47, No. 10. – P. 2838–2840.
33. Du J. et al. Enhanced proton conductivity of metal organic framework at low humidity by improvement in water retention // Journal of Colloid and Interface Science. – Elsevier Inc., 2020. – Vol. 573. – P. 360–369.
34. Sharma P., Shahi V.K. Assembly of MIL-101(Cr)- sulphonated poly(ether sulfone) membrane matrix for selective electrodialytic separation of Pb2+ from mono- /bi-valent ions // Chemical Engineering Journal. – 2020. – Vol. 382.
35. Wickenheisser M., Janiak C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2- hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications // Microporous and Mesoporous Materials. – 2015. – Vol. 204, No. C.
36. Pham X.N. et al. Designing a novel heterostructure AgInS2@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation // Nanoscale Advances. – 2022. – Vol. 4, No. 17.
37. Sarmah M.K. et al. Sustainable hydrogen generation and storage – a review // RSC Advances. – 2023. – Vol. 13, No. 36. – P. 25253–25275.
38. Mulky L. et al. An overview of hydrogen storage technologies – Key challenges and opportunities // Materials Chemistry and Physics. – 2024. – Vol. 325. – P. 129710.
39. Yue M. et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges // Renewable and Sustainable Energy Reviews. – 2021. – Vol. 146. – P. 111180.
40. Yu Z. et al. Hydrogen adsorption and kinetics in MIL- 101(Cr) and hybrid activated carbon-MIL-101(Cr) materials // International Journal of Hydrogen Energy. – 2017. – Vol. 42, No. 12. – P. 8021–8031.
41. Prasanth K.P. et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework // International Journal of Hydrogen Energy. – 2011. – Vol. 36, No. 13.
42. Karikkethu Prabhakaran P., Deschamps J. Doping activated carbon incorporated composite MIL-101 using lithium: Impact on hydrogen uptake // Journal of Materials Chemistry A. – 2015. – Vol. 3, No. 13.
43. Kayal S., Chakraborty A. Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture // Chemical Engineering Journal. – 2018. – Vol. 334. – P. 780–788.
44. Tiow K. IMECE2015-50751. – 2017. – Vol. 101. – P. 2015–2018.
45. Lee Y.R. et al. Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101 // ACS Applied Materials and Interfaces. – 2018. – Vol. 10, No. 28. – P. 23918–23927. 46. Fang Y. et al. Enhanced adsorption of rubidium ion by a phenol@MIL-101(Cr) composite material // Microporous and Mesoporous Materials. – 2017. – Vol. 251. – P. 51– 57.
46. Lim C., Lin S., Yun Y. Jo ur na l P // Journal of Hazardous Materials. – Elsevier B.V., 2019. – Vol. 101, No. Ii. – P. 121689.
47. Bai Z.Q. et al. Introduction of amino groups into acidresistant MOFs for enhanced U(vi) sorption // Journal of Materials Chemistry A. – 2015. – Vol. 3, No. 2.
48. Zhuang H. et al. Vapor Deposition-Prepared MIL- 100(Cr)- And MIL-101(Cr)-Supported Iron Catalysts for Effectively Removing Organic Pollutants from Water // ACS Omega. – 2021. – Vol. 6, No. 39.
Рецензия
Для цитирования:
Алимханова А.Н., Ракишева С.Р., Машенцева А.А., Абуова Ф.У., Нурпейсова Д.Т. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ НА ОСНОВЕ MIL-101(Cr) МЕТАЛЛ-ОРГАНИЧЕСКИХ КАРКАСОВ: МИНИОБЗОР. Вестник НЯЦ РК. 2025;(2):132-141. https://doi.org/10.52676/1729-7885-2025-2-132-141
For citation:
Alimkhanova A.N., Rakisheva S.R., Mashentseva A.A., Abuova F.U., Nurpeisova D.T. DEVELOPMENT OF FUNCTIONAL MATERIALS BASED ON MIL-101(Cr) METAL-ORGANIC FRAMEWORKS: A MINI REVIEW. NNC RK Bulletin. 2025;(2):132-141. (In Russ.) https://doi.org/10.52676/1729-7885-2025-2-132-141