DEVELOPMENT OF AN ELECTROMAGNETIC SYSTEM FOR DEFLECTING THE PRIMARY ELECTRON BEAM IN A PBI
https://doi.org/10.52676/1729-7885-2025-3-192-200
Abstract
The work is dedicated to the development of an electromagnetic system for deflecting the primary electron beam in a plasma-beam installation (PBI). The system, consisting of two pairs of mutually perpendicular coils, enables two-dimensional control of the beam position, which allows for a reduction in specific thermal power, an increase in the total power of the beam-plasma discharge (BPD), and the implementation of heating and recrystallization annealing with a minimal temperature gradient. The coil parameters were calculated to generate a magnetic induction of up to 62.66 mT. The deflection of the electron beam on the surface of a metal plate was visually confirmed, demonstrating the operability and functional flexibility of the electromagnetic control system. Experiments in BPD mode using the differential collector method (aperture probe) showed an increase in ion current from 9 mA to 12 mA at an electron beam accelerating voltage of 5000 V, a deuterium pressure of 1 mTorr, and a deflection amplitude of 27.95 dB.
About the Authors
A. Zh. MiniyazovKazakhstan
Kurchatov
M. K. Skakov
Kazakhstan
Kurchatov
T. R. Tulenbergenov
Kazakhstan
Kurchatov; Semey
B. Zh. Chektybayev
Kazakhstan
Kurchatov
I. A. Sokolov
Kazakhstan
Kurchatov; Semey
A. V. Gradoboev
Russian Federation
Tomsk
References
1. Kazakhstan Material Testing Tokamak KTM Construction [Электронный ресурс]. – 2022. – Режим доступа: https://www.nnc.kz/ru/news/show/348 (дата обращения: 22.03.2025 г.).
2. Patent RK na poleznuyu model' No. 2080. Imitatsionnyy stend s plazmenno-puchkovoy ustanovkoy / Kolodeshnikov A.A., Zuev V.A., Ganovichev D.A., Tulenbergenov T.R. i dr. – opubl. 15.03.2017. – Byul. No. 5. (In Russ.)
3. Chektybayev B.Zh., Skakov M.K., Tulenbergenov T.R., Sokolov I.A., Miniyazov A.Zh., Zhanbolatova G.K., Nauryzbayev R.Zh. Measurement of plasma parameters in the PBI using the Langmuir probe // Fusion Engineering and Design. – August 2024. – Vol. 205. – 114546. https://doi.org/10.1016/j.fusengdes.2024.114546
4. Chektybayev B., Zhunisbek S., Kashikbayev Ye, Duisen A., Sokolov I., Tulenbergenov T. First spectroscopic studies in the plasma-beam installation // AIP Advances. – 2024. – Vol. 14. – 095218. https://doi.org/10.1063/5.0224254
5. Kurnaev V., Vizgalov I., Gutorov K., Tulenbergenov T., Sokolov I., Kolodeshnikov A., Ignashev V., Zuev V., Bogomolova I., Klimov N. Investigation of plasma-surface interaction at plasma beam facilities // Journal of Nuclear Materials. – 2015. – Vol. 463. – P. 228–232. https://doi.org/10.1016/j.jnucmat.2014.12.076
6. Tulenbergenov T.R., Skakov M.K., Miniyazov A.Zh., Sokolov I.A., Kaiyrdy G.K. The role of a simulation stand with a plasma-beam installation in studies of plasma-surface interaction // NNC RK Bulletin. – 2019. – Issue 4(80). – P. 51–58.
7. Coda, S. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas // Review of Scientific Instruments. – 2008. – Vol. 79. – 10F501. https://doi.org/10.1063/1.2966599
8. Dadyka, D. I., & Anisimov, I. O. Ignition of the beam-plasma discharge in the initially neitral gas // Problems of Atomic Science and Technology. – 2018. – Vol. 116(4). – P. 204–207.
9. Savinov, V. P., Kruglov, M. S., Riaby, V. A., Chervyakov, A. V., & Yakunin, V. G. Plasma Interaction with Boundary Surfaces in Low-Pressure Radio-Frequency Capacitive Discharge // Physics of Atomic Nuclei. – 2019. – Vol. 82(10). – P. 1433–1436. https://doi.org/10.1134/S106377881910017X
10. Dadyka, D. I., & Anisimov, I. O. Quasi-stationary mode of the beam-plasma discharge // Problems of Atomic Science and Technology. – 2018. – Vol. 118(6). – P. 164–167.
11. A. A. Kaptanoglu, G. P. Langlois, M. Landreman, Topology optimization for inverse magnetostatics as sparse regression: Application to electromagnetic coils for stellarators // Computer Methods in Applied Mechanics and Engineering. – 2024. – Vol. 418. https://doi.org/10.1016/j.cma.2023.116504
12. L. V. Zinovyev et al., Start of Electron Cooling System for the NICA Booster // Physics of Particles and Nuclei Letters. – 2018. – Vol. 15. – P. 745–748. https://doi.org/10.1134/S1547477118070737
13. Zenker, R. Modern electron beam technologies for soldering and surface treatment / R. Zenker, А. Buchwalder, N. Frenkler, S. Thiemer // Vakuum in Forschung und Praxis. – 2005. – Vol. 17. – P. 66–72. https://doi.org/10.1002/vipr.200500247
14. Momoyo Enyama, Ryuji Nishi, Hiroyuki Ito, Jun Yamasaki, Low-aberration ExB deflector optics for scanning electron microscopy // Microscopy. – 2023. – Vol. 72. – Issue 5. – P. 399–407. https://doi.org/10.1093/jmicro/dfad001
15. A. Scheinker, Adaptive machine learning for robust diagnostics and control of time-varying particle accelerator components and beams // Information (Switzerland). – 2021. – Vol. 12(4). – 181. https://doi.org/10.3390/info12040161
16. M. A. R. Krielaart, D. J. Maas, S. V. Loginov, P. Kruit, Miniature electron beam separator based on three stacked dipoles // Journal of Applied Physics. – 2020. – Vol. 127. https://doi.org/10.1063/5.0008089
17. R. Zenker, A. Buchwalder, N. Frenkler, S. Thiemer, Moderne Elektronenstrahltechnologien zum Fügen und zur Randschichtbehandlung. Modern Electron Beam Technologies for Soldering and Surface Treatment // Vakuum in Forschung und Praxis. – 2005. – Vol. 17. – Issue 2. – P. 66–72. https://doi.org/10.1002/vipr.200500247
Review
For citations:
Miniyazov A.Zh., Skakov M.K., Tulenbergenov T.R., Chektybayev B.Zh., Sokolov I.A., Gradoboev A.V. DEVELOPMENT OF AN ELECTROMAGNETIC SYSTEM FOR DEFLECTING THE PRIMARY ELECTRON BEAM IN A PBI. NNC RK Bulletin. 2025;(3):192-200. (In Russ.) https://doi.org/10.52676/1729-7885-2025-3-192-200










