Preview

Вестник НЯЦ РК

Расширенный поиск

КОМПОЗИТНЫЕ МЕМБРАНЫ НА ОСНОВЕ MXene И НАНОЦЕЛЛЮЛОЗЫ: СВОЙСТВА И ЭФФЕКТИВНОСТЬ В ОЧИСТКЕ ВОДЫ

https://doi.org/10.52676/1729-7885-2025-4-65-78

Аннотация

В настоящее время нехватка водных ресурсов и снижение их качества являются одной из важнейших экологических и социальных проблем. В результате промышленного производства, сельского хозяйства и бытовой деятельности реки, озера и подземные воды загрязняются тяжелыми металлами, органическими красителями, фармацевтическими остатками, микропластиком и патогенными микроорганизмами. Это приводит к разрушению экосистем, нанесению вреда биоте и увеличению риска для здоровья человека. Традиционные методы очистки воды – отстаивание, хлорирование, адсорбция, использование ионообменных смол – эффективны лишь частично и не способны полностью удалять загрязнители при сложном составе или высокой концентрации. В связи с этим мембранные технологии рассматриваются как перспективное направление, позволяющее эффективно разделять воду на молекулярном уровне, потреблять меньше энергии и обеспечивать экологическую безопасность. В последние годы особый интерес вызывают композитные мембраны на основе MXene и наноцеллюлозы. MXene – это двухмерные карбиды и нитриды, получаемые из фаз MAX, обладающие слоистой структурой, высокой электропроводностью, гидрофильностью и функциональными поверхностными группами, что повышает проводимость мембран и эффективность разделения ионов и адсорбции органических загрязнителей. Наноцеллюлоза является биологически разлагаемым наноматериалом, обеспечивающим механическую прочность, стабильность и биосовместимость мембраны, а также повышающим селективность и антифулинговые свойства.

Комбинация MXene и наноцеллюлозы демонстрирует синергетический эффект: наноцеллюлоза предотвращает агрегацию слоев MXene, а прочные межфазные взаимодействия защищают мембрану от дефектов. Это позволяет эффективно удалять соли, тяжелые металлы, органические красители, фармацевтические остатки и микропластик. Кроме того, слоистая структура композита и функциональные группы обеспечивают долгосрочную стабильность и высокую производительность.

В статье подробно рассматриваются свойства MXene и наноцеллюлозы, методы получения композитных мембран, их структурные характеристики и перспективы применения в очистке воды. Исследование демонстрирует потенциал новых поколений мембранных технологий как экологически безопасных, высокоэффективных и стабильных материалов, что имеет важное научное и практическое значение для эффективной очистки воды и долгосрочной стабильности систем.

Об авторах

А. Т. Табынбаева
«Казахский национальный университет им. Аль-Фараби»
Казахстан

Алматы



А. Р. Сатаева
«Казахский национальный университет им. Аль-Фараби»
Казахстан

Алматы



Н. А. Ахметов
«Международный казахско-турецкий университет им. Ходжи Ахмеда Ясави»
Казахстан

Туркестан



К. Т. Тастамбек
«Казахский национальный университет им. Аль-Фараби»; «Международный казахско-турецкий университет им. Ходжи Ахмеда Ясави»

Алматы

Туркестан



Ж. Т. Тауанов
«Казахский национальный университет им. Аль-Фараби»; «Международный казахско-турецкий университет им. Ходжи Ахмеда Ясави»
Казахстан

Алматы

Туркестан



Список литературы

1. Abdelhamid, H. N. Nanocellulose-based materials for water pollutant removal: A review // International Journal of Molecular Sciences. – 2024. – Vol. 25(15). – P. 8529. https://doi.org/10.3390/ijms25158529

2. Liu, Y., Liu, H., & Shen, Z. Nanocellulose based filtration membrane in industrial waste water treatment: a review // Materials. – 2021. – Vol. 14(18). – P. 5398. https://doi.org/10.3390/ma14185398

3. Varghese, R. T., Cherian, R. M., Antony, T., Tharayil, A., Das, H., Kargarzadeh, H., & Thomas, S. A review on the best bioadsorbent membrane-nanocellulose for effective removal of pollutants from aqueous solutions // Carbohydrate Polymer Technologies and Applications. – 2022. – Vol. 3. – P. 100209. https://doi.org/10.1016/j.carpta.2022.100209

4. Huang, L., Ding, L., Caro, J., & Wang, H. MXene‐based membranes for drinking water production // Angewandte Chemie International Edition. –2023. https://doi.org/10.1002/anie.202311138

5. AlHadithy, Z.E., AbdulRazak, A.A., Al-Ghaban, A.M.H.A. et al. Advancements in Water Treatment with MXene-Enhanced Membranes: A Review of Current Progress and Future Directions // Water Air Soil Pollut. – 2024. https://doi.org/10.1007/s11270-024-07628-x

6. Sun, Y., Lu, J., Li, S., Dai, C., Zou, D., & Jing, W. MXene-based membranes in water treatment: Current status and future prospects // Separation and Purification Technology. – 2024. https://doi.org/10.1016/j.seppur.2023.125640

7. Zubair, M., Yasir, M., Ponnamma, D., Mazhar, H., Sedlarik, V., Hawari, A. H., ... & Al-Ejji, M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. // Carbohydrate Polymers. – 2024. https://doi.org/10.1016/j.carbpol.2024.121775

8. Iqbal, D., Zhao, Y., Zhao, R., Russell, S. J., & Ning, X. A review on nanocellulose and superhydrophobic features for advanced water treatment // Polymers. – 2022. https://doi.org/10.3390/polym14122343

9. Al-Hamadani, Y. A., Jun, B. M., Yoon, M., TaheriQazvini, N., Snyder, S. A., Jang, M., ... & Yoon, Y. Applications of MXene-based membranes in water purification: A review // Chemosphere. – 2020. https://doi.org/10.1016/j.chemosphere.2020.126821

10. Hong, S., Al Marzooqi, F., El-Demellawi, J. K., Al Marzooqi, N., Arafat, H. A., & Alshareef, H. N. Ion-selective separation using MXene-based membranes: a review // ACS Materials Letters. – 2023. – Vol. 5(2). – P. 341–356. https://doi.org/10.1021/acsmaterialslett.2c00914

11. Meskher, H., Thakur, A., Hazra, S. K., Ahamed, M. S., Saleque, A. M., Alsalhy, Q. F., ... & Lynch, I. Recent advances in applications of MXenes for desalination, water purification and as an antibacterial: a review // Environmental Science: Nano. – 2025. https://doi.org/10.1039/D4EN00427B

12. Liu, J., Zhao, Z., Xu, R., Wang, Y., Wang, X., & Tan, F. Sulfhydryl functionalized two-dimensional Ti3C2Tx MXene for efficient removal of Hg2+ in water samples // Journal of Hazardous Materials. – 2024. https://doi.org/10.1016/j.jhazmat.2024.135205

13. Daulbayev, C., Nursharip, A., Tauanov, Z., Busquets, R., & Baimenov, A. Mechanisms of mercury removal from water with highly efficient MXene and silver-modified polyethyleneimine cryogel composite filters // Advanced Composites and Hybrid Materials. – 2024. http://dx.doi.org/10.1007/s42114-024-00945-z

14. Wang, X., Wang, R., Xu, Y., & Wei, G. Recent advances in biohybrid membranes for water treatment: Preparation strategies, nano-hybridization, bioinspired functionalization, applications, and sustainability analysis // Journal of Materials Chemistry A. – 2025. https://doi.org/10.1039/D5TA04214C

15. Vo, T.S., Lwin, K.M. & Kim, K. Recent developments of nano-enhanced composite membranes designed for water/wastewater purification – a review // Adv. Compos. Hybrid Mater. – 2024. – Vol. 7. – P. 127. https://doi.org/10.1007/s42114-024-00923-5

16. Tiwary, S.K., Singh, M., Chavan, S.V. et al. Graphene oxide-based membranes for water desalination and purification // npj 2D Mater. Appl. – 2024. – Vol. 8. – P. 27. https://doi.org/10.1038/s41699-024-00462-z

17. Santhamoorthy, M., Asaithambi, P., Perumal, I., Elangovan, N., Natarajan, P., Lin, M. C. & Phan, T. T. V. A comprehensive review of the functionalized polymer composite membranes in wastewater treatment // Journal of Environmental Chemical Engineering. – 2025. – Vol. 13(5). – P. 117735. http://dx.doi.org/10.1016/j.jece.2025.117735

18. J. Jimmy and B. Kandasubramanian, Mxene functionalized polymer composites: Synthesis and applications // Eur Polym J. – 2020. https://doi.org/10.1016/j.eurpolymj.2019.109367

19. R. Ohno, K. Shudo, T. Tano, and K. Kakinuma, Development of Polymer Composite Membraneswith Hydrophilic TiO2 Nanoparticles and Perfluorosulfonic Acid-Based Electrolyte for Polymer Electrolyte Fuel Cells Operating over a Wide Temperature Range // ACS Appl Energy Mater. – 2023. https://doi.org/10.1021/acsaem.3c01721

20. Liu, S., Han, X., Hua, J., Zhang, Y., Gao, Y., Daigger, G. T. & Song, G. Graphene oxide-based composite membranes: Antifouling mechanisms, functionalization strategies, and applications in refractory wastewater treatment // Separation and Purification Technology. – 2025. https://doi.org/10.1016/j.seppur.2025.134416

21. Choi, Jong Soo, et al. A review of metal–organic framework-based membranes for the removal of emerging contaminants from water // Journal of Water Process Engineering. – 2024. https://doi.org/10.1016/j.jwpe.2024.106456

22. Liu, R., Sui, Y., & Wang, X. Metal–organic frameworkbased ultrafiltration membrane separation with capacitivetype for enhanced phosphate removal // Chemical Engineering Journal. – 2019. https://doi.org/10.1016/j.cej.2019.04.136

23. Motshekga, S.C., Oyewo, O.A. & Makgato, S.S. Recent and Prospects of Synthesis and Application of MetalOrganic Frameworks (MOFs) in Water Treatment: A Review // J Inorg Organomet Polym. – 2024. https://doi.org/10.1007/s10904-024-03063-x

24. R. Pathak, M. Punetha, S. Bhatt, S. A. Pillai, P. S. Dhapola, and V. D. Punetha, Organic and inorganic nanofillers for polymer nanocomposites // Advances in Functionalized Polymer Nanocomposites. – Elsevier. – 2024. https://doi.org/10.1016/B978-0-443-18860-2.00003-7

25. S. Xue et al. Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. – 2020. https://doi.org/10.1021/acs.nanolett.9b03780.

26. Razmjou, A., Asadnia, M., Hosseini, E. et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions // Nat Commun. – 2019. https://doi.org/10.1038/s41467-019-13648-7

27. Oviroh, P. O., Jen, T. C., Ren, J., Mohlala, L. M., Warmbier, R., & Karimzadeh, S. Nanoporous MoS2 membrane for water desalination: a molecular dynamics study // Langmuir. – 2021. https://doi.org/10.1021/acs.langmuir.1c00708

28. Henmi, M., Nakatsuji, K., Ichikawa, T., Tomioka, H., Sakamoto, T., Yoshio, M., & Kato, T. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions // Advanced Materials. – 2012. https://doi.org/10.1002/adma.201200108

29. H. Oh et al. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes // ACS Nano. – 2025, https://doi.org/10.1021/acsnano.4c09699

30. Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes // Membranes. – 2021; https://doi.org/10.3390/membranes11020097

31. R. F. M. Elshaarawy, R. M. Abd El-Aal, F. H. A. Mustafa, A. E. Borai, S. Schmidt, and C. Janiak, Dual ionic liquidbased crosslinked chitosan for fine-tuning of antifouling, water throughput, and denitrification performance of polysulfone membrane // Int J Biol Macromol. – 2021. https://doi.org/10.1016/j.ijbiomac.2020.12.186

32. Radu, E.R.; Voicu, S.I.; Thakur, V.K. Polymeric Membranes for Biomedical Applications // Polymers. – 2023. https://doi.org/10.3390/polym15030619

33. Karki, S., Hazarika, G., Yadav, D., & Ingole, P. G. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives // Desalination. – 2024. https://doi.org/10.1016/j.desal.2023.117200

34. Hazarika, B., Ahmaruzzaman, M., Santosh, M. S., Barceló, D., & Rtimi, S. Advances in polymer-based nanocomposite membranes for water remediation: Preparation methods, critical issues and mechanisms // Journal of Environmental Chemical Engineering. – 2023. https://doi.org/10.1016/j.jece.2023.111401

35. Y. A. Ghodke, N. Mayilswamy, and B. Kandasubramanian, Polyamide (PA)- and Polyimide (PI)- based membranes for desalination application // Polymer Bulletin. – 2023. https://doi.org/10.1007/s00289-022-04559-7

36. N. Li et al. MXene-PANI/PES composite ultrafiltration membranes with conductive properties for anti-fouling and dye removal // J Memb Sci. – 2023. https://doi.org/10.1016/j.memsci.2022.121271

37. R. Wu, Y. Tan, F. Meng, Y. Zhang, and Y.-X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation // Desalination. – 2022. https://doi.org/10.1016/j.desal.2022.116013

38. H. Zhao, D. Zhang, H. Sun, Y. Zhao, and M. Xie, Adsorption and detection of heavy metals from aqueous water by PVDF/ATP-CDs composite membrane // Colloids Surf A Physicochem Eng Asp. – 2022. https://doi.org/10.1016/j.colsurfa.2022.128573

39. A. Spoială et al., Preparation and Characterization of Chitosan/TiO2 Composite Membranes as Adsorbent Materials for Water Purification // Membranes (Basel). – 2022. https://doi.org/10.3390/membranes12080804

40. T. F. Ajibade, H. Tian, K. Hassan Lasisi, Q. Xue, W. Yao, and K. Zhang, Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater // Sep Purif Technol. – 2021. https://doi.org/10.1016/j.seppur.2021.119135

41. Z.Liu et al., Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator // Adv Compos Hybrid Mater. – 2021. https://doi.org/10.1007/s42114-021-00364-4

42. M. Barrejón and M. Prato, Carbon Nanotube Membranes in Water Treatment Applications // Adv Mater Interfaces. – 2022. https://doi.org/10.1002/admi.202101260

43. Z. Jin, Q. Chen, Y. Shen, X. Chen, M. Qiu, and Y. Fan, Construction of TiO2-ZrO2 composite nanofiltration membranes for efficient selective separation of dyes and salts // Sep Purif Technol. – 2024. https://doi.org/10.1016/j.seppur.2024.128127

44. Long W., Chen Z., Shi J., Yang S. Efficient Removal of Cr(VI) Ions in Petrochemical Wastewater Using Fe3O4 @Saccharomyces cerevisiae Magnetic Nanocomposite // Nanomaterials. – 2022. https://www.mdpi.com/2079-4991/12/18/3250

45. Li H., Hua J., Li R., Zhang Y., Jin H., Wang S., Chen G. Application of Magnetic Nanocomposites: Core–Shell Fe3O4 Material for Efficient Adsorption of Cr(VI) // Water/ – 2023. https://www.mdpi.com/2073-4441/15/15/2827

46. Zhou W., Wang Y., Zhang J., Zhang Y., et al. Xanthate-Modified Magnetic Fe3O4@SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water // Polymers. – 2022. https://www.mdpi.com/2073-4360/14/6/1107

47. R. Mahdavi Far, B. Van der Bruggen, A. Verliefde, and E. Cornelissen, A review of zeolite materials used in membranes for water purification: history, applications, challenges and future trends // Journal of Chemical Technology & Biotechnology. – 2022. https://doi.org/10.1002/jctb.6963

48. Z.-K. Tan, J.-L. Gong, S.-Y. Fang, J. Li, W.-C. Cao, and Z.-P. Chen, Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal– organic framework (Ag- MOF) for water treatment // Appl Surf Sci. – 2022. https://doi.org/10.1016/j.apsusc.2022.153059

49. Jasim, H. K., Al-Ridah, Z. A., & Naje, A. S. Graphene oxide–carbon nanotube composite membrane for enhanced removal of organic pollutants by forward osmosis // Desalination and Water Treatment. – 2024. https://doi.org/10.1016/j.dwt.2024.100363

50. Kirk, C. H., Wang, P., Chong, C. Y. D., Zhao, Q., Sun, J., & Wang, J. TiO2 photocatalytic ceramic membranes for water and wastewater treatment: Technical readiness and pathway ahead // Journal of Materials Science & Technology. – 2024. https://doi.org/10.1016/j.jmst.2023.09.05

51. Kumari, S., Chowdhry, J., Kumar, M., & Garg, M. C. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects // Environmental Research. – 2024. https://doi.org/10.1016/j.envres.2024.119782

52. Ajith, S., Almomani, F., & Qiblawey, H. Emerging 2D MXene-based polymeric membranes for water treatment and desalination // Journal of Environmental Chemical Engineering. – 2024. https://doi.org/10.1016/j.jece.2024.112078

53. Rodrigues, A. S., Batista, J. G., Rodrigues, M. Á., Thipe, V. C., Minarini, L. A., Lopes, P. S., & Lugão, A. B. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics // Frontiers in Microbiology. – 2024. https://doi.org/10.3389/fmicb.2024.1440065

54. Chamam, B., Ben Dassi, R., Abderraouf, J., Mericq, J. P., Faur, C., Trabelsi, I., ... & Heran, M. Incorporation of Ag- ZnO Nanoparticles into PVDF Membrane Formulation to Enhance Dye Retention, Permeability, and Antibacterial Properties // Polymers. – 2025. https://doi.org/10.3390/polym17091269

55. Xu, T., Qu, R., Zhang, Y., Sun, C., Wang, Y., Kong, X & Ji, C. Amino-Thiol Bifunctional Polysilsesquioxane/Carbon Nanotubes Magnetic Composites as Adsorbents for Hg (II) Removal // Frontiers in Environmental Chemistry. – 2021. https://doi.org/10.3389/fenvc.2021.706254

56. V. P. Kothavale et al., Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms // Journal of Physics and Chemistry of Solids. – 2023. https://doi.org/10.1016/j.jpcs.2022.111089

57. S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon // Journal of Saudi Chemical Society. – 2021. https://doi.org/10.1016/j.jscs.2021.101296

58. Y. Zhang et al. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review // Chemosphere. – 2021. https://doi.org/10.1016/j.chemosphere.2021.130927

59. Z. Shen et al., Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets // Int J Environ Res Public Health. – 2019. https://doi.org/10.3390/ijerph16234659

60. Azam, R. S., Almasri, D. A., Alfahel, R., Hawari, A. H., Hassan, M. K., Elzatahry, A. A., & Mahmoud, K. A. MXene (Ti3C2Tx)/cellulose acetate mixed-matrix membrane enhances fouling resistance and rejection in the crossflow filtration process // Membranes. – 2022. https://doi.org/10.3390/membranes12040406

61. Pandey, R. P., Rasheed, P. A., Gomez, T., Azam, R. S., & Mahmoud, K. A. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2Tx (MXene)/cellulose acetate. Journal of Membrane Science. – 2020. – Vol. 607. – P. 118139. https://doi.org/10.1016/j.memsci.2020.118139

62. I. Ounifi et al., Antifouling Membranes Based on Cellulose Acetate (CA) Blended with Poly(acrylic acid) for Heavy Metal Remediation // Applied Sciences. – 2021. https://doi.org/10.3390/app11104354.

63. Karim, Z., Mathew, A. P., Kokol, V., Wei, J., & Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents // RSC Advances. – 2016. https://doi.org/10.1039/C5RA27059F

64. P. Kallem, N. Elashwah, G. Bharath, H. M. Hegab, S. W. Hasan, and F. Banat, Zwitterion-Grafted 2D MXene (Ti3C2Tx) Nanocomposite Membranes with Improved Water Permeability and Self- Cleaning Properties // ACS Appl Nano Mater. – 2023. https://doi.org/10.1021/acsanm.2c04722

65. L. Qian et al., Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance // RSC Adv. – 2023. https://doi.org/10.1039/D3RA01116J

66. Chai, P. V., Mahmoudi, E., Teow, Y. H., & Mohammad, A. W. Preparation of novel polysulfone-Fe3O4/GO mixedmatrix membrane for humic acid rejection // Journal of Water Process Engineering. – 2017. https://doi.org/10.1016/j.jwpe.2016.06.001

67. A. Zahid et al., Enabling improved PSF nanocomposite membrane for wastewater treatment with selective nanotubular morphology of PANI/ZnO // Mater Adv. – 2024. https://doi.org/10.1039/D4MA00859F

68. A. A. Alotaibi, A. K. Shukla, M. H. Mrad, A. M. Alswieleh, and K. M. Alotaibi, Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater // Membranes (Basel). – 2021. https://doi.org/10.3390/membranes11120935

69. Wang, Y., Xu, H., Ding, M., Zhang, L., Chen, G., Fu, J., Wang, A., Chen, J., Liu, B., Yang, W. MXene-regulation polyamide membrane featuring bubble-like nodule for efficient dye/salt separation and antifouling performance // RSC Advances. – 2022. https://doi.org/10.1039/D2RA00335J

70. Qian, L., Yuan, C., Wang, X., Zhang, H., Du, L., Wei, G., Chen, S. Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance // RSC Advances. – 2023. https://doi.org/10.1039/D3RA01116J

71. Usman, J., Yogarathinam, L. T., Baig, N., Abba, S. I., Chrystie, R., & Aljundi, I. H. MXene-enhanced sulfonated TFN nanofiltration membranes for improved desalination performance // Desalination. – 2024. https://doi.org/10.1016/j.desal.2024.117566

72. Ganji, N., Reardon-Lochbaum, C. A., Ambade, S. B., Anastasia, C. M., Eckhert, P. M., Rosenzweig, Z. & Fairbrother, D. H. Stability of Ti3C2Tx MXenes in engineered environments // Environmental Science: Nano. – 2024. https://doi.org/10.1039/D3EN00438D

73. Xue, Q., & Zhang, K. The preparation of high-performance and stable MXene nanofiltration membranes with MXene embedded in the organic phase // Membranes. – 2021. https://doi.org/10.3390/membranes12010002

74. Zhang, Y., Li, S., Huang, R., He, J., Sun, Y., Qin, Y., & Shen, L. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly (acrylic acid) for effective wastewater treatment // Journal of Membrane Science. – 2022. https://doi.org/10.1016/j.memsci.2022.120360

75. Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W., ... & Kontturi, E. Understanding nanocellulose– water interactions: turning a detriment into an asset // Chemical reviews. – 2023. https://doi.org/10.1021/acs.chemrev.2c0061

76. Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Saalah, S.; Lenggoro, W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes // Membranes. – 2022. https://doi.org/10.3390/membranes12030287

77. Mbisana, M., Keroletswe, N., Nareetsile, F. et al. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment // Cellulose 31. – 2024. https://doi.org/10.1007/s10570-024-06268-y

78. Z. Dai, V. Ottesen, J. Deng, R. M. L. Helberg, and L. Deng, A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 // Separation. – 2019. https://doi.org/10.3390/fib7050040

79. Xu, T., Song, Q., Liu, K. et al. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode // Nano-Micro Lett. – 2023. https://doi.org/10.1007/s40820-023-01073-x

80. Qin, Z., Chen, X., Lv, Y., Zhao, B., Fang, X., & Pan, K. Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel // Chemical Engineering Journal. – 2023. https://doi.org/10.1016/j.cej.2022.138586

81. Sun, Z., Ahmad, M., Gao, Z., Shan, Z., Xu, L., Wang, S., & Jin, Y. Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion // Sustainable Energy & Fuels. – 2022. https://doi.org/10.1039/D1SE01729B

82. Xin, W., Xi, G. Q., Cao, W. T., Ma, C., Liu, T., Ma, M. G., & Bian, J. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding // RSC advances. – 2019. https://doi.org/10.1039/C9RA06399D

83. Chen, R., Tang, H., Dai, Y., Zong, W., Zhang, W., He, G., & Wang, X. Robust bioinspired MXene–hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications // ACS nano. – 2022. https://doi.org/10.1021/acsnano.2c08163

84. Chang, L., Peng, Z., Zhang, T., Yu, C., & Zhong, W. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors // Nanoscale. – 2021. https://doi.org/10.1039/D0NR08090J

85. Yuan T, Zhang Z, Liu Q, Liu X.T, Miao Y.N, Yao C.L. MXene (Ti3C2Tx)/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors // Carbohydr Polym. – 2023. https://doi.org/10.1016/j.carbpol.2022.120519

86. Liu, Z. S., Liu, J., Dai, Y., Li, X. F., Yu, Z. Z., & Zhang, H. B. Bioinspired ultrathin mxene/cnc composite film for electromagnetic interference shielding // J. Inorg. Mater. – 2020. https://doi.org/10.15541/jim20190148

87. M. Xia et al., Bio-inspired high-strength supramolecular fiber membrane by ice-dissolving-regeneration for achieving self-healing, self-cleaning and water purification // Chemical Engineering Journal. – 2024. https://doi.org/10.1016/j.cej.2024.150023

88. E. Pantuso et al., Smart dynamic hybrid membranes with self-cleaning capability // Nature Communications. – 2023. https://doi.org/10.1038/s41467-023-41446-9

89. D. G. Oldal, F. Topuz, T. Holtzl, and G. Szekely, Green Electrospinning of Biodegradable Cellulose Acetate Nanofibrous Membranes with Tunable Porosity // ACS Sustainable Chemistry & Engineering. – 2023. https://doi.org/10.1021/acssuschemeng.2c05676

90. H. Wang et al., Organic molecular sieve membranes for chemical separations // Chemical Society Reviews. – 2021. https://doi.org/10.1039/D0CS01347A

91. M. Shahbabaei and T. Tang, Molecular modeling of thinfilm nanocomposite membranes for reverse osmosis water desalination // PCCP. – 2022. https://doi.org/10.1039/D2CP03839K

92. M. B. Asif and Z. Zhang, Ceramic membrane technology for water and wastewater treatment // Chemical Engineering Journal, – 2021. https://doi.org/10.1016/j.cej.2021.129481

93. M. Issaoui et al., Membrane technology for sustainable water resources management: Challenges and future projections // Sustainable Chemistry and Pharmacy. – 2022. https://doi.org/10.1016/j.scp.2021.100590

94. Lin, H., Wu, M., Zhao, Z., Zhang, F., Zhou, C., Yang, D., ... & Liang, L. Design of High-Performance MXene-Based 2D Membranes for Desalination via Machine Learning and Hybrid Optimization Algorithms // ACS Applied Materials & Interfaces. – 2025. https://doi.org/10.1021/acsami.5c11202

95. S. Tang et al., Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films // Carbohydrate Polymers. – 2023. https://doi.org/10.1016/j.carbpol.2022.120204

96. Xu, Z., Zhu, B., Liu, X., Lan, T., Huang, Y., Zhang, Y., & Wu, D. High-performance electroionic artificial muscles boosted by superior ion transport with Ti3C2Tx MXene/ Cellulose nanocomposites for advanced 3D-motion actuation // Chemical Engineering Journal. – 2023. https://doi.org/10.1016/j.cej.2023.147246

97. S. Wang, Z. Sun, M. Ahmad, and M. Miao, Fabrication of porous MXene/cellulose nanofiber composite membranes for osmotic energy harvesting // IJMS. – 2024. https://doi.org/10.3390/ijms252313226

98. Ghilan, A., Nicu, R., Ciolacu, D. E., & Ciolacu, F. Insight into the latest medical applications of nanocellulose // Materials. – 2023. https://doi.org/10.3390/ma16124447

99. Talipova, A. B., Buranych, V. V., Savitskaya, I. S., Bondar, O. V., Turlybekuly, A., & Pogrebnjak, A. D. Synthesis, properties, and applications of nanocomposite materials based on bacterial cellulose and MXene // Polymers. – 2023. https://doi.org/10.3390/polym1520406

100. Narkkun, T., Kraithong, W., Ruangdit, S., Klaysom, C., Faungnawakij, K., & Itthibenchapong, V. Pebax/modified cellulose nanofiber composite membranes for highly enhanced CO2/CH4 separation // ACS omega. – 2023. https://doi.org/10.1021/acsomega.3c04800

101. Xing, C., Tian, Y., Yu, Z., Li, Z., Meng, B., & Peng, Z. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for highperformance triboelectric nanogenerators // ACS Applied Materials & Interfaces. – 2022. https://doi.org/10.1021/acsami.2c10551

102. Ahmed, B., Hossain, M. J., Al Parvez, A., Talukder, A., Al-Amin, M., Al Mahmud, M. A., & Islam, T. Recent advancements of MXene/nanocellulose‐based hydrogel and aerogel: a review // Advanced Energy and Sustainability Research. – 2024. https://doi.org/10.1002/aesr.202300231

103. Zhang, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. High-performance and stable two-dimensional MXenepolyethyleneimine composite lamellar membranes for molecular separation // ACS Applied Materials & Interfaces. – 2022. https://doi.org/10.1021/acsami.1c20540

104. Xu, T., Song, Q., Liu, K., Liu, H., Pan, J., Liu, W & Zhang, K. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode // Nano-Micro Letters. – 2023. https://doi.org/10.1007/s40820-023-01073-x


Рецензия

Для цитирования:


Табынбаева А.Т., Сатаева А.Р., Ахметов Н.А., Тастамбек К.Т., Тауанов Ж.Т. КОМПОЗИТНЫЕ МЕМБРАНЫ НА ОСНОВЕ MXene И НАНОЦЕЛЛЮЛОЗЫ: СВОЙСТВА И ЭФФЕКТИВНОСТЬ В ОЧИСТКЕ ВОДЫ. Вестник НЯЦ РК. 2025;(4):65-78. https://doi.org/10.52676/1729-7885-2025-4-65-78

For citation:


Tabynbayeva A.T., Satayeva A.R., Akhmetov N.A., Tastambek K.T., Tauanov Zh.T. COMPOSITE MEMBRANES BASED ON MXene AND NANOCELLULOSE: PROPERTIES AND WATER PURIFICATION EFFICIENCY. NNC RK Bulletin. 2025;(4):65-78. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-4-65-78

Просмотров: 163

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)