COMPOSITE MEMBRANES BASED ON MXene AND NANOCELLULOSE: PROPERTIES AND WATER PURIFICATION EFFICIENCY
https://doi.org/10.52676/1729-7885-2025-4-65-78
Abstract
The scarcity of water resources and the deterioration of water quality have become critical environmental and social challenges. Rivers, lakes, and groundwater are increasingly contaminated due to industrial, agricultural, and domestic activities, with pollutants including heavy metals, organic dyes, pharmaceutical residues, microplastics, and pathogenic microorganisms. Such contamination disrupts ecosystems, threatens biota, and poses risks to human health. Conventional water treatment methods, such as sedimentation, chlorination, adsorption, and ion-exchange resins, are often insufficient for the complete removal of complex or highly concentrated pollutants. Consequently, membrane-based technologies have emerged as a promising approach, offering molecular-level separation, low energy consumption, and environmentally safe operation.
Recently, composite membranes based on MXene and nanocellulose have attracted significant attention. MXenes, twodimensional carbides and nitrides derived from MAX phases, possess a layered structure, high electrical conductivity, hydrophilicity, and functional surface groups, enhancing ion separation efficiency and adsorption of organic contaminants. Nanocellulose, a biodegradable nanomaterial, improves the mechanical strength, stability, and biocompatibility of membranes, while also increasing selectivity and antifouling performance.
The combination of MXene and nanocellulose exhibits a synergistic effect: nanocellulose prevents aggregation of MXene layers, and strong interfacial interactions protect membranes from defects. This synergy enables efficient removal of salts, heavy metals, organic dyes, pharmaceutical residues, and microplastics, while the layered structure and functional groups ensure long-term stability and high performance.
This review highlights the properties of MXene and nanocellulose, methods for fabricating composite membranes, their structural characteristics, and potential applications in water purification. The study underscores the potential of nextgeneration membrane technologies as environmentally safe, highly efficient, and durable solutions for sustainable water treatment, demonstrating both scientific significance and practical relevance.
About the Authors
A. T. TabynbayevaКазахстан
Almaty
A. R. Satayeva
Казахстан
Almaty
N. A. Akhmetov
Казахстан
Turkestan
K. T. Tastambek
Almaty
Turkestan
Zh. T. Tauanov
Казахстан
Almaty
Turkestan
References
1. Abdelhamid, H. N. Nanocellulose-based materials for water pollutant removal: A review // International Journal of Molecular Sciences. – 2024. – Vol. 25(15). – P. 8529. https://doi.org/10.3390/ijms25158529
2. Liu, Y., Liu, H., & Shen, Z. Nanocellulose based filtration membrane in industrial waste water treatment: a review // Materials. – 2021. – Vol. 14(18). – P. 5398. https://doi.org/10.3390/ma14185398
3. Varghese, R. T., Cherian, R. M., Antony, T., Tharayil, A., Das, H., Kargarzadeh, H., & Thomas, S. A review on the best bioadsorbent membrane-nanocellulose for effective removal of pollutants from aqueous solutions // Carbohydrate Polymer Technologies and Applications. – 2022. – Vol. 3. – P. 100209. https://doi.org/10.1016/j.carpta.2022.100209
4. Huang, L., Ding, L., Caro, J., & Wang, H. MXene‐based membranes for drinking water production // Angewandte Chemie International Edition. –2023. https://doi.org/10.1002/anie.202311138
5. AlHadithy, Z.E., AbdulRazak, A.A., Al-Ghaban, A.M.H.A. et al. Advancements in Water Treatment with MXene-Enhanced Membranes: A Review of Current Progress and Future Directions // Water Air Soil Pollut. – 2024. https://doi.org/10.1007/s11270-024-07628-x
6. Sun, Y., Lu, J., Li, S., Dai, C., Zou, D., & Jing, W. MXene-based membranes in water treatment: Current status and future prospects // Separation and Purification Technology. – 2024. https://doi.org/10.1016/j.seppur.2023.125640
7. Zubair, M., Yasir, M., Ponnamma, D., Mazhar, H., Sedlarik, V., Hawari, A. H., ... & Al-Ejji, M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. // Carbohydrate Polymers. – 2024. https://doi.org/10.1016/j.carbpol.2024.121775
8. Iqbal, D., Zhao, Y., Zhao, R., Russell, S. J., & Ning, X. A review on nanocellulose and superhydrophobic features for advanced water treatment // Polymers. – 2022. https://doi.org/10.3390/polym14122343
9. Al-Hamadani, Y. A., Jun, B. M., Yoon, M., TaheriQazvini, N., Snyder, S. A., Jang, M., ... & Yoon, Y. Applications of MXene-based membranes in water purification: A review // Chemosphere. – 2020. https://doi.org/10.1016/j.chemosphere.2020.126821
10. Hong, S., Al Marzooqi, F., El-Demellawi, J. K., Al Marzooqi, N., Arafat, H. A., & Alshareef, H. N. Ion-selective separation using MXene-based membranes: a review // ACS Materials Letters. – 2023. – Vol. 5(2). – P. 341–356. https://doi.org/10.1021/acsmaterialslett.2c00914
11. Meskher, H., Thakur, A., Hazra, S. K., Ahamed, M. S., Saleque, A. M., Alsalhy, Q. F., ... & Lynch, I. Recent advances in applications of MXenes for desalination, water purification and as an antibacterial: a review // Environmental Science: Nano. – 2025. https://doi.org/10.1039/D4EN00427B
12. Liu, J., Zhao, Z., Xu, R., Wang, Y., Wang, X., & Tan, F. Sulfhydryl functionalized two-dimensional Ti3C2Tx MXene for efficient removal of Hg2+ in water samples // Journal of Hazardous Materials. – 2024. https://doi.org/10.1016/j.jhazmat.2024.135205
13. Daulbayev, C., Nursharip, A., Tauanov, Z., Busquets, R., & Baimenov, A. Mechanisms of mercury removal from water with highly efficient MXene and silver-modified polyethyleneimine cryogel composite filters // Advanced Composites and Hybrid Materials. – 2024. http://dx.doi.org/10.1007/s42114-024-00945-z
14. Wang, X., Wang, R., Xu, Y., & Wei, G. Recent advances in biohybrid membranes for water treatment: Preparation strategies, nano-hybridization, bioinspired functionalization, applications, and sustainability analysis // Journal of Materials Chemistry A. – 2025. https://doi.org/10.1039/D5TA04214C
15. Vo, T.S., Lwin, K.M. & Kim, K. Recent developments of nano-enhanced composite membranes designed for water/wastewater purification – a review // Adv. Compos. Hybrid Mater. – 2024. – Vol. 7. – P. 127. https://doi.org/10.1007/s42114-024-00923-5
16. Tiwary, S.K., Singh, M., Chavan, S.V. et al. Graphene oxide-based membranes for water desalination and purification // npj 2D Mater. Appl. – 2024. – Vol. 8. – P. 27. https://doi.org/10.1038/s41699-024-00462-z
17. Santhamoorthy, M., Asaithambi, P., Perumal, I., Elangovan, N., Natarajan, P., Lin, M. C. & Phan, T. T. V. A comprehensive review of the functionalized polymer composite membranes in wastewater treatment // Journal of Environmental Chemical Engineering. – 2025. – Vol. 13(5). – P. 117735. http://dx.doi.org/10.1016/j.jece.2025.117735
18. J. Jimmy and B. Kandasubramanian, Mxene functionalized polymer composites: Synthesis and applications // Eur Polym J. – 2020. https://doi.org/10.1016/j.eurpolymj.2019.109367
19. R. Ohno, K. Shudo, T. Tano, and K. Kakinuma, Development of Polymer Composite Membraneswith Hydrophilic TiO2 Nanoparticles and Perfluorosulfonic Acid-Based Electrolyte for Polymer Electrolyte Fuel Cells Operating over a Wide Temperature Range // ACS Appl Energy Mater. – 2023. https://doi.org/10.1021/acsaem.3c01721
20. Liu, S., Han, X., Hua, J., Zhang, Y., Gao, Y., Daigger, G. T. & Song, G. Graphene oxide-based composite membranes: Antifouling mechanisms, functionalization strategies, and applications in refractory wastewater treatment // Separation and Purification Technology. – 2025. https://doi.org/10.1016/j.seppur.2025.134416
21. Choi, Jong Soo, et al. A review of metal–organic framework-based membranes for the removal of emerging contaminants from water // Journal of Water Process Engineering. – 2024. https://doi.org/10.1016/j.jwpe.2024.106456
22. Liu, R., Sui, Y., & Wang, X. Metal–organic frameworkbased ultrafiltration membrane separation with capacitivetype for enhanced phosphate removal // Chemical Engineering Journal. – 2019. https://doi.org/10.1016/j.cej.2019.04.136
23. Motshekga, S.C., Oyewo, O.A. & Makgato, S.S. Recent and Prospects of Synthesis and Application of MetalOrganic Frameworks (MOFs) in Water Treatment: A Review // J Inorg Organomet Polym. – 2024. https://doi.org/10.1007/s10904-024-03063-x
24. R. Pathak, M. Punetha, S. Bhatt, S. A. Pillai, P. S. Dhapola, and V. D. Punetha, Organic and inorganic nanofillers for polymer nanocomposites // Advances in Functionalized Polymer Nanocomposites. – Elsevier. – 2024. https://doi.org/10.1016/B978-0-443-18860-2.00003-7
25. S. Xue et al. Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. – 2020. https://doi.org/10.1021/acs.nanolett.9b03780.
26. Razmjou, A., Asadnia, M., Hosseini, E. et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions // Nat Commun. – 2019. https://doi.org/10.1038/s41467-019-13648-7
27. Oviroh, P. O., Jen, T. C., Ren, J., Mohlala, L. M., Warmbier, R., & Karimzadeh, S. Nanoporous MoS2 membrane for water desalination: a molecular dynamics study // Langmuir. – 2021. https://doi.org/10.1021/acs.langmuir.1c00708
28. Henmi, M., Nakatsuji, K., Ichikawa, T., Tomioka, H., Sakamoto, T., Yoshio, M., & Kato, T. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions // Advanced Materials. – 2012. https://doi.org/10.1002/adma.201200108
29. H. Oh et al. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes // ACS Nano. – 2025, https://doi.org/10.1021/acsnano.4c09699
30. Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes // Membranes. – 2021; https://doi.org/10.3390/membranes11020097
31. R. F. M. Elshaarawy, R. M. Abd El-Aal, F. H. A. Mustafa, A. E. Borai, S. Schmidt, and C. Janiak, Dual ionic liquidbased crosslinked chitosan for fine-tuning of antifouling, water throughput, and denitrification performance of polysulfone membrane // Int J Biol Macromol. – 2021. https://doi.org/10.1016/j.ijbiomac.2020.12.186
32. Radu, E.R.; Voicu, S.I.; Thakur, V.K. Polymeric Membranes for Biomedical Applications // Polymers. – 2023. https://doi.org/10.3390/polym15030619
33. Karki, S., Hazarika, G., Yadav, D., & Ingole, P. G. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives // Desalination. – 2024. https://doi.org/10.1016/j.desal.2023.117200
34. Hazarika, B., Ahmaruzzaman, M., Santosh, M. S., Barceló, D., & Rtimi, S. Advances in polymer-based nanocomposite membranes for water remediation: Preparation methods, critical issues and mechanisms // Journal of Environmental Chemical Engineering. – 2023. https://doi.org/10.1016/j.jece.2023.111401
35. Y. A. Ghodke, N. Mayilswamy, and B. Kandasubramanian, Polyamide (PA)- and Polyimide (PI)- based membranes for desalination application // Polymer Bulletin. – 2023. https://doi.org/10.1007/s00289-022-04559-7
36. N. Li et al. MXene-PANI/PES composite ultrafiltration membranes with conductive properties for anti-fouling and dye removal // J Memb Sci. – 2023. https://doi.org/10.1016/j.memsci.2022.121271
37. R. Wu, Y. Tan, F. Meng, Y. Zhang, and Y.-X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation // Desalination. – 2022. https://doi.org/10.1016/j.desal.2022.116013
38. H. Zhao, D. Zhang, H. Sun, Y. Zhao, and M. Xie, Adsorption and detection of heavy metals from aqueous water by PVDF/ATP-CDs composite membrane // Colloids Surf A Physicochem Eng Asp. – 2022. https://doi.org/10.1016/j.colsurfa.2022.128573
39. A. Spoială et al., Preparation and Characterization of Chitosan/TiO2 Composite Membranes as Adsorbent Materials for Water Purification // Membranes (Basel). – 2022. https://doi.org/10.3390/membranes12080804
40. T. F. Ajibade, H. Tian, K. Hassan Lasisi, Q. Xue, W. Yao, and K. Zhang, Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater // Sep Purif Technol. – 2021. https://doi.org/10.1016/j.seppur.2021.119135
41. Z.Liu et al., Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator // Adv Compos Hybrid Mater. – 2021. https://doi.org/10.1007/s42114-021-00364-4
42. M. Barrejón and M. Prato, Carbon Nanotube Membranes in Water Treatment Applications // Adv Mater Interfaces. – 2022. https://doi.org/10.1002/admi.202101260
43. Z. Jin, Q. Chen, Y. Shen, X. Chen, M. Qiu, and Y. Fan, Construction of TiO2-ZrO2 composite nanofiltration membranes for efficient selective separation of dyes and salts // Sep Purif Technol. – 2024. https://doi.org/10.1016/j.seppur.2024.128127
44. Long W., Chen Z., Shi J., Yang S. Efficient Removal of Cr(VI) Ions in Petrochemical Wastewater Using Fe3O4 @Saccharomyces cerevisiae Magnetic Nanocomposite // Nanomaterials. – 2022. https://www.mdpi.com/2079-4991/12/18/3250
45. Li H., Hua J., Li R., Zhang Y., Jin H., Wang S., Chen G. Application of Magnetic Nanocomposites: Core–Shell Fe3O4 Material for Efficient Adsorption of Cr(VI) // Water/ – 2023. https://www.mdpi.com/2073-4441/15/15/2827
46. Zhou W., Wang Y., Zhang J., Zhang Y., et al. Xanthate-Modified Magnetic Fe3O4@SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water // Polymers. – 2022. https://www.mdpi.com/2073-4360/14/6/1107
47. R. Mahdavi Far, B. Van der Bruggen, A. Verliefde, and E. Cornelissen, A review of zeolite materials used in membranes for water purification: history, applications, challenges and future trends // Journal of Chemical Technology & Biotechnology. – 2022. https://doi.org/10.1002/jctb.6963
48. Z.-K. Tan, J.-L. Gong, S.-Y. Fang, J. Li, W.-C. Cao, and Z.-P. Chen, Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal– organic framework (Ag- MOF) for water treatment // Appl Surf Sci. – 2022. https://doi.org/10.1016/j.apsusc.2022.153059
49. Jasim, H. K., Al-Ridah, Z. A., & Naje, A. S. Graphene oxide–carbon nanotube composite membrane for enhanced removal of organic pollutants by forward osmosis // Desalination and Water Treatment. – 2024. https://doi.org/10.1016/j.dwt.2024.100363
50. Kirk, C. H., Wang, P., Chong, C. Y. D., Zhao, Q., Sun, J., & Wang, J. TiO2 photocatalytic ceramic membranes for water and wastewater treatment: Technical readiness and pathway ahead // Journal of Materials Science & Technology. – 2024. https://doi.org/10.1016/j.jmst.2023.09.05
51. Kumari, S., Chowdhry, J., Kumar, M., & Garg, M. C. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects // Environmental Research. – 2024. https://doi.org/10.1016/j.envres.2024.119782
52. Ajith, S., Almomani, F., & Qiblawey, H. Emerging 2D MXene-based polymeric membranes for water treatment and desalination // Journal of Environmental Chemical Engineering. – 2024. https://doi.org/10.1016/j.jece.2024.112078
53. Rodrigues, A. S., Batista, J. G., Rodrigues, M. Á., Thipe, V. C., Minarini, L. A., Lopes, P. S., & Lugão, A. B. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics // Frontiers in Microbiology. – 2024. https://doi.org/10.3389/fmicb.2024.1440065
54. Chamam, B., Ben Dassi, R., Abderraouf, J., Mericq, J. P., Faur, C., Trabelsi, I., ... & Heran, M. Incorporation of Ag- ZnO Nanoparticles into PVDF Membrane Formulation to Enhance Dye Retention, Permeability, and Antibacterial Properties // Polymers. – 2025. https://doi.org/10.3390/polym17091269
55. Xu, T., Qu, R., Zhang, Y., Sun, C., Wang, Y., Kong, X & Ji, C. Amino-Thiol Bifunctional Polysilsesquioxane/Carbon Nanotubes Magnetic Composites as Adsorbents for Hg (II) Removal // Frontiers in Environmental Chemistry. – 2021. https://doi.org/10.3389/fenvc.2021.706254
56. V. P. Kothavale et al., Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms // Journal of Physics and Chemistry of Solids. – 2023. https://doi.org/10.1016/j.jpcs.2022.111089
57. S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon // Journal of Saudi Chemical Society. – 2021. https://doi.org/10.1016/j.jscs.2021.101296
58. Y. Zhang et al. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review // Chemosphere. – 2021. https://doi.org/10.1016/j.chemosphere.2021.130927
59. Z. Shen et al., Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets // Int J Environ Res Public Health. – 2019. https://doi.org/10.3390/ijerph16234659
60. Azam, R. S., Almasri, D. A., Alfahel, R., Hawari, A. H., Hassan, M. K., Elzatahry, A. A., & Mahmoud, K. A. MXene (Ti3C2Tx)/cellulose acetate mixed-matrix membrane enhances fouling resistance and rejection in the crossflow filtration process // Membranes. – 2022. https://doi.org/10.3390/membranes12040406
61. Pandey, R. P., Rasheed, P. A., Gomez, T., Azam, R. S., & Mahmoud, K. A. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2Tx (MXene)/cellulose acetate. Journal of Membrane Science. – 2020. – Vol. 607. – P. 118139. https://doi.org/10.1016/j.memsci.2020.118139
62. I. Ounifi et al., Antifouling Membranes Based on Cellulose Acetate (CA) Blended with Poly(acrylic acid) for Heavy Metal Remediation // Applied Sciences. – 2021. https://doi.org/10.3390/app11104354.
63. Karim, Z., Mathew, A. P., Kokol, V., Wei, J., & Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents // RSC Advances. – 2016. https://doi.org/10.1039/C5RA27059F
64. P. Kallem, N. Elashwah, G. Bharath, H. M. Hegab, S. W. Hasan, and F. Banat, Zwitterion-Grafted 2D MXene (Ti3C2Tx) Nanocomposite Membranes with Improved Water Permeability and Self- Cleaning Properties // ACS Appl Nano Mater. – 2023. https://doi.org/10.1021/acsanm.2c04722
65. L. Qian et al., Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance // RSC Adv. – 2023. https://doi.org/10.1039/D3RA01116J
66. Chai, P. V., Mahmoudi, E., Teow, Y. H., & Mohammad, A. W. Preparation of novel polysulfone-Fe3O4/GO mixedmatrix membrane for humic acid rejection // Journal of Water Process Engineering. – 2017. https://doi.org/10.1016/j.jwpe.2016.06.001
67. A. Zahid et al., Enabling improved PSF nanocomposite membrane for wastewater treatment with selective nanotubular morphology of PANI/ZnO // Mater Adv. – 2024. https://doi.org/10.1039/D4MA00859F
68. A. A. Alotaibi, A. K. Shukla, M. H. Mrad, A. M. Alswieleh, and K. M. Alotaibi, Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater // Membranes (Basel). – 2021. https://doi.org/10.3390/membranes11120935
69. Wang, Y., Xu, H., Ding, M., Zhang, L., Chen, G., Fu, J., Wang, A., Chen, J., Liu, B., Yang, W. MXene-regulation polyamide membrane featuring bubble-like nodule for efficient dye/salt separation and antifouling performance // RSC Advances. – 2022. https://doi.org/10.1039/D2RA00335J
70. Qian, L., Yuan, C., Wang, X., Zhang, H., Du, L., Wei, G., Chen, S. Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance // RSC Advances. – 2023. https://doi.org/10.1039/D3RA01116J
71. Usman, J., Yogarathinam, L. T., Baig, N., Abba, S. I., Chrystie, R., & Aljundi, I. H. MXene-enhanced sulfonated TFN nanofiltration membranes for improved desalination performance // Desalination. – 2024. https://doi.org/10.1016/j.desal.2024.117566
72. Ganji, N., Reardon-Lochbaum, C. A., Ambade, S. B., Anastasia, C. M., Eckhert, P. M., Rosenzweig, Z. & Fairbrother, D. H. Stability of Ti3C2Tx MXenes in engineered environments // Environmental Science: Nano. – 2024. https://doi.org/10.1039/D3EN00438D
73. Xue, Q., & Zhang, K. The preparation of high-performance and stable MXene nanofiltration membranes with MXene embedded in the organic phase // Membranes. – 2021. https://doi.org/10.3390/membranes12010002
74. Zhang, Y., Li, S., Huang, R., He, J., Sun, Y., Qin, Y., & Shen, L. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly (acrylic acid) for effective wastewater treatment // Journal of Membrane Science. – 2022. https://doi.org/10.1016/j.memsci.2022.120360
75. Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W., ... & Kontturi, E. Understanding nanocellulose– water interactions: turning a detriment into an asset // Chemical reviews. – 2023. https://doi.org/10.1021/acs.chemrev.2c0061
76. Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Saalah, S.; Lenggoro, W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes // Membranes. – 2022. https://doi.org/10.3390/membranes12030287
77. Mbisana, M., Keroletswe, N., Nareetsile, F. et al. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment // Cellulose 31. – 2024. https://doi.org/10.1007/s10570-024-06268-y
78. Z. Dai, V. Ottesen, J. Deng, R. M. L. Helberg, and L. Deng, A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 // Separation. – 2019. https://doi.org/10.3390/fib7050040
79. Xu, T., Song, Q., Liu, K. et al. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode // Nano-Micro Lett. – 2023. https://doi.org/10.1007/s40820-023-01073-x
80. Qin, Z., Chen, X., Lv, Y., Zhao, B., Fang, X., & Pan, K. Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel // Chemical Engineering Journal. – 2023. https://doi.org/10.1016/j.cej.2022.138586
81. Sun, Z., Ahmad, M., Gao, Z., Shan, Z., Xu, L., Wang, S., & Jin, Y. Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion // Sustainable Energy & Fuels. – 2022. https://doi.org/10.1039/D1SE01729B
82. Xin, W., Xi, G. Q., Cao, W. T., Ma, C., Liu, T., Ma, M. G., & Bian, J. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding // RSC advances. – 2019. https://doi.org/10.1039/C9RA06399D
83. Chen, R., Tang, H., Dai, Y., Zong, W., Zhang, W., He, G., & Wang, X. Robust bioinspired MXene–hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications // ACS nano. – 2022. https://doi.org/10.1021/acsnano.2c08163
84. Chang, L., Peng, Z., Zhang, T., Yu, C., & Zhong, W. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors // Nanoscale. – 2021. https://doi.org/10.1039/D0NR08090J
85. Yuan T, Zhang Z, Liu Q, Liu X.T, Miao Y.N, Yao C.L. MXene (Ti3C2Tx)/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors // Carbohydr Polym. – 2023. https://doi.org/10.1016/j.carbpol.2022.120519
86. Liu, Z. S., Liu, J., Dai, Y., Li, X. F., Yu, Z. Z., & Zhang, H. B. Bioinspired ultrathin mxene/cnc composite film for electromagnetic interference shielding // J. Inorg. Mater. – 2020. https://doi.org/10.15541/jim20190148
87. M. Xia et al., Bio-inspired high-strength supramolecular fiber membrane by ice-dissolving-regeneration for achieving self-healing, self-cleaning and water purification // Chemical Engineering Journal. – 2024. https://doi.org/10.1016/j.cej.2024.150023
88. E. Pantuso et al., Smart dynamic hybrid membranes with self-cleaning capability // Nature Communications. – 2023. https://doi.org/10.1038/s41467-023-41446-9
89. D. G. Oldal, F. Topuz, T. Holtzl, and G. Szekely, Green Electrospinning of Biodegradable Cellulose Acetate Nanofibrous Membranes with Tunable Porosity // ACS Sustainable Chemistry & Engineering. – 2023. https://doi.org/10.1021/acssuschemeng.2c05676
90. H. Wang et al., Organic molecular sieve membranes for chemical separations // Chemical Society Reviews. – 2021. https://doi.org/10.1039/D0CS01347A
91. M. Shahbabaei and T. Tang, Molecular modeling of thinfilm nanocomposite membranes for reverse osmosis water desalination // PCCP. – 2022. https://doi.org/10.1039/D2CP03839K
92. M. B. Asif and Z. Zhang, Ceramic membrane technology for water and wastewater treatment // Chemical Engineering Journal, – 2021. https://doi.org/10.1016/j.cej.2021.129481
93. M. Issaoui et al., Membrane technology for sustainable water resources management: Challenges and future projections // Sustainable Chemistry and Pharmacy. – 2022. https://doi.org/10.1016/j.scp.2021.100590
94. Lin, H., Wu, M., Zhao, Z., Zhang, F., Zhou, C., Yang, D., ... & Liang, L. Design of High-Performance MXene-Based 2D Membranes for Desalination via Machine Learning and Hybrid Optimization Algorithms // ACS Applied Materials & Interfaces. – 2025. https://doi.org/10.1021/acsami.5c11202
95. S. Tang et al., Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films // Carbohydrate Polymers. – 2023. https://doi.org/10.1016/j.carbpol.2022.120204
96. Xu, Z., Zhu, B., Liu, X., Lan, T., Huang, Y., Zhang, Y., & Wu, D. High-performance electroionic artificial muscles boosted by superior ion transport with Ti3C2Tx MXene/ Cellulose nanocomposites for advanced 3D-motion actuation // Chemical Engineering Journal. – 2023. https://doi.org/10.1016/j.cej.2023.147246
97. S. Wang, Z. Sun, M. Ahmad, and M. Miao, Fabrication of porous MXene/cellulose nanofiber composite membranes for osmotic energy harvesting // IJMS. – 2024. https://doi.org/10.3390/ijms252313226
98. Ghilan, A., Nicu, R., Ciolacu, D. E., & Ciolacu, F. Insight into the latest medical applications of nanocellulose // Materials. – 2023. https://doi.org/10.3390/ma16124447
99. Talipova, A. B., Buranych, V. V., Savitskaya, I. S., Bondar, O. V., Turlybekuly, A., & Pogrebnjak, A. D. Synthesis, properties, and applications of nanocomposite materials based on bacterial cellulose and MXene // Polymers. – 2023. https://doi.org/10.3390/polym1520406
100. Narkkun, T., Kraithong, W., Ruangdit, S., Klaysom, C., Faungnawakij, K., & Itthibenchapong, V. Pebax/modified cellulose nanofiber composite membranes for highly enhanced CO2/CH4 separation // ACS omega. – 2023. https://doi.org/10.1021/acsomega.3c04800
101. Xing, C., Tian, Y., Yu, Z., Li, Z., Meng, B., & Peng, Z. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for highperformance triboelectric nanogenerators // ACS Applied Materials & Interfaces. – 2022. https://doi.org/10.1021/acsami.2c10551
102. Ahmed, B., Hossain, M. J., Al Parvez, A., Talukder, A., Al-Amin, M., Al Mahmud, M. A., & Islam, T. Recent advancements of MXene/nanocellulose‐based hydrogel and aerogel: a review // Advanced Energy and Sustainability Research. – 2024. https://doi.org/10.1002/aesr.202300231
103. Zhang, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. High-performance and stable two-dimensional MXenepolyethyleneimine composite lamellar membranes for molecular separation // ACS Applied Materials & Interfaces. – 2022. https://doi.org/10.1021/acsami.1c20540
104. Xu, T., Song, Q., Liu, K., Liu, H., Pan, J., Liu, W & Zhang, K. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode // Nano-Micro Letters. – 2023. https://doi.org/10.1007/s40820-023-01073-x
Review
For citations:
Tabynbayeva A.T., Satayeva A.R., Akhmetov N.A., Tastambek K.T., Tauanov Zh.T. COMPOSITE MEMBRANES BASED ON MXene AND NANOCELLULOSE: PROPERTIES AND WATER PURIFICATION EFFICIENCY. NNC RK Bulletin. 2025;(4):65-78. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-4-65-78
JATS XML










