Preview

ҚР ҰЯО жаршысы

Кеңейтілген іздеу

MXene ЖӘНЕ НАНОЦЕЛЛЮЛОЗА НЕГІЗІНДЕГІ КОМПОЗИТТІ МЕМБРАНАЛАР: ҚАСИЕТТЕРІ ЖӘНЕ СУДЫ ТАЗАЛАУДАҒЫ ТИІМДІЛІГІ

https://doi.org/10.52676/1729-7885-2025-4-65-78

Толық мәтін:

Аңдатпа

Қазіргі таңда су ресурстарының тапшылығы мен сапасының төмендеуі экологиялық және әлеуметтік маңызды мәселе болып отыр. Өнеркәсіптік өндіріс, ауыл шаруашылығы және тұрмыстық қызмет нәтижесінде өзендер, көлдер және жер асты сулары ауыр металдар, органикалық бояғыштар, фармацевтикалық қалдықтар, микропластиктер және патогенді микроағзалармен ластанады. Бұл экожүйелердің бұзылуына, биотаға зиян келуіне және адам денсаулығына қауіп төндіреді. Дәстүрлі тазалау әдістері – тұндыру, хлорлау, адсорбция, ионалмастырғыш шайырлар – күрделі құрамдағы немесе жоғары концентрациядағы ластағыштарды толық жоя алмайды. Осыған байланысты мембраналық технологиялар суды молекулалық деңгейде бөлуге, энергияны аз тұтынуға және экологиялық қауіпсіздікті қамтамасыз етуге мүмкіндік беретін перспективалы бағыт болып саналады.

Соңғы жылдары MXene және наноцеллюлоза негізіндегі композитті мембраналар ерекше қызығушылық тудырды. MXene – MAX фазаларынан алынған екіөлшемді карбидтер мен нитридтердің тобы, оның қабаттық құрылымы, жоғары электрөткізгіштігі, гидрофильділігі және функционалды беткі топтары мембраналардың өткізгіштігін арттырып, иондарды бөлу мен органикалық ластағыштарды адсорбциялау тиімділігін жақсартады. Наноцеллюлоза биологиялық тұрғыдан ыдырайтын наноматериал болып, мембрананың механикалық беріктігін, тұрақтылығын және биосәйкестігін қамтамасыз етеді, сондай-ақ селективтілік пен ластануға карсы қасиеттерін арттырады.

MXene мен наноцеллюлозаның комбинациясы синергиялық әсер көрсетеді: наноцеллюлоза MXene қабаттарының агрегациясын болдырмайды, ал берік фаза әрекеттесу мембрананы ақаулардан қорғайды. Бұл тұщыландыру, ауыр металдарды, органикалық бояғыштарды, дәрілік қалдықтарды және микропластиктерді тиімді өңдеуге мүмкіндік береді. Сонымен қатар, композиттің қабаттық құрылымы мен функционалды топтары ұзақ мерзімді тұрақтылық пен жоғары өнімділікті қамтамасыз етеді.

Мақалада MXene мен наноцеллюлозаның қасиеттері, композитті мембраналарды алу әдістері, құрылымдық сипаттамалары және суды тазалауда қолдану перспективалары жан-жақты қарастырылады. Зерттеу жаңа буын мембраналық технологиялардың экологиялық қауіпсіз, жоғары өнімді және тұрақты болуына қатысты әлеуетін көрсетеді, бұл суды тиімді тазалау мен ұзақ мерзімді тұрақтылыққа қол жеткізуде маңызды ғылыми және практикалық мәнге ие.

Авторлар туралы

А. Т. Табынбаева
«Әл-Фараби атындағы Қазақ Ұлттық Университеті»
Қазақстан

Алматы



А. Р. Сатаева
«Әл-Фараби атындағы Қазақ Ұлттық Университеті»
Қазақстан

Алматы



Н. А. Ахметов
«Қожа Ахмет Ясауи атындағы Халықаралық қазақ-түрік университеті»
Қазақстан

Түркістан



К. Т. Тастамбек
«Әл-Фараби атындағы Қазақ Ұлттық Университеті»; «Қожа Ахмет Ясауи атындағы Халықаралық қазақ-түрік университеті»

Алматы

Түркістан



Ж. Т. Тауанов
«Әл-Фараби атындағы Қазақ Ұлттық Университеті»; «Қожа Ахмет Ясауи атындағы Халықаралық қазақ-түрік университеті»
Қазақстан

Алматы

Түркістан



Әдебиет тізімі

1. Abdelhamid, H. N. Nanocellulose-based materials for water pollutant removal: A review // International Journal of Molecular Sciences. – 2024. – Vol. 25(15). – P. 8529. https://doi.org/10.3390/ijms25158529

2. Liu, Y., Liu, H., & Shen, Z. Nanocellulose based filtration membrane in industrial waste water treatment: a review // Materials. – 2021. – Vol. 14(18). – P. 5398. https://doi.org/10.3390/ma14185398

3. Varghese, R. T., Cherian, R. M., Antony, T., Tharayil, A., Das, H., Kargarzadeh, H., & Thomas, S. A review on the best bioadsorbent membrane-nanocellulose for effective removal of pollutants from aqueous solutions // Carbohydrate Polymer Technologies and Applications. – 2022. – Vol. 3. – P. 100209. https://doi.org/10.1016/j.carpta.2022.100209

4. Huang, L., Ding, L., Caro, J., & Wang, H. MXene‐based membranes for drinking water production // Angewandte Chemie International Edition. –2023. https://doi.org/10.1002/anie.202311138

5. AlHadithy, Z.E., AbdulRazak, A.A., Al-Ghaban, A.M.H.A. et al. Advancements in Water Treatment with MXene-Enhanced Membranes: A Review of Current Progress and Future Directions // Water Air Soil Pollut. – 2024. https://doi.org/10.1007/s11270-024-07628-x

6. Sun, Y., Lu, J., Li, S., Dai, C., Zou, D., & Jing, W. MXene-based membranes in water treatment: Current status and future prospects // Separation and Purification Technology. – 2024. https://doi.org/10.1016/j.seppur.2023.125640

7. Zubair, M., Yasir, M., Ponnamma, D., Mazhar, H., Sedlarik, V., Hawari, A. H., ... & Al-Ejji, M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. // Carbohydrate Polymers. – 2024. https://doi.org/10.1016/j.carbpol.2024.121775

8. Iqbal, D., Zhao, Y., Zhao, R., Russell, S. J., & Ning, X. A review on nanocellulose and superhydrophobic features for advanced water treatment // Polymers. – 2022. https://doi.org/10.3390/polym14122343

9. Al-Hamadani, Y. A., Jun, B. M., Yoon, M., TaheriQazvini, N., Snyder, S. A., Jang, M., ... & Yoon, Y. Applications of MXene-based membranes in water purification: A review // Chemosphere. – 2020. https://doi.org/10.1016/j.chemosphere.2020.126821

10. Hong, S., Al Marzooqi, F., El-Demellawi, J. K., Al Marzooqi, N., Arafat, H. A., & Alshareef, H. N. Ion-selective separation using MXene-based membranes: a review // ACS Materials Letters. – 2023. – Vol. 5(2). – P. 341–356. https://doi.org/10.1021/acsmaterialslett.2c00914

11. Meskher, H., Thakur, A., Hazra, S. K., Ahamed, M. S., Saleque, A. M., Alsalhy, Q. F., ... & Lynch, I. Recent advances in applications of MXenes for desalination, water purification and as an antibacterial: a review // Environmental Science: Nano. – 2025. https://doi.org/10.1039/D4EN00427B

12. Liu, J., Zhao, Z., Xu, R., Wang, Y., Wang, X., & Tan, F. Sulfhydryl functionalized two-dimensional Ti3C2Tx MXene for efficient removal of Hg2+ in water samples // Journal of Hazardous Materials. – 2024. https://doi.org/10.1016/j.jhazmat.2024.135205

13. Daulbayev, C., Nursharip, A., Tauanov, Z., Busquets, R., & Baimenov, A. Mechanisms of mercury removal from water with highly efficient MXene and silver-modified polyethyleneimine cryogel composite filters // Advanced Composites and Hybrid Materials. – 2024. http://dx.doi.org/10.1007/s42114-024-00945-z

14. Wang, X., Wang, R., Xu, Y., & Wei, G. Recent advances in biohybrid membranes for water treatment: Preparation strategies, nano-hybridization, bioinspired functionalization, applications, and sustainability analysis // Journal of Materials Chemistry A. – 2025. https://doi.org/10.1039/D5TA04214C

15. Vo, T.S., Lwin, K.M. & Kim, K. Recent developments of nano-enhanced composite membranes designed for water/wastewater purification – a review // Adv. Compos. Hybrid Mater. – 2024. – Vol. 7. – P. 127. https://doi.org/10.1007/s42114-024-00923-5

16. Tiwary, S.K., Singh, M., Chavan, S.V. et al. Graphene oxide-based membranes for water desalination and purification // npj 2D Mater. Appl. – 2024. – Vol. 8. – P. 27. https://doi.org/10.1038/s41699-024-00462-z

17. Santhamoorthy, M., Asaithambi, P., Perumal, I., Elangovan, N., Natarajan, P., Lin, M. C. & Phan, T. T. V. A comprehensive review of the functionalized polymer composite membranes in wastewater treatment // Journal of Environmental Chemical Engineering. – 2025. – Vol. 13(5). – P. 117735. http://dx.doi.org/10.1016/j.jece.2025.117735

18. J. Jimmy and B. Kandasubramanian, Mxene functionalized polymer composites: Synthesis and applications // Eur Polym J. – 2020. https://doi.org/10.1016/j.eurpolymj.2019.109367

19. R. Ohno, K. Shudo, T. Tano, and K. Kakinuma, Development of Polymer Composite Membraneswith Hydrophilic TiO2 Nanoparticles and Perfluorosulfonic Acid-Based Electrolyte for Polymer Electrolyte Fuel Cells Operating over a Wide Temperature Range // ACS Appl Energy Mater. – 2023. https://doi.org/10.1021/acsaem.3c01721

20. Liu, S., Han, X., Hua, J., Zhang, Y., Gao, Y., Daigger, G. T. & Song, G. Graphene oxide-based composite membranes: Antifouling mechanisms, functionalization strategies, and applications in refractory wastewater treatment // Separation and Purification Technology. – 2025. https://doi.org/10.1016/j.seppur.2025.134416

21. Choi, Jong Soo, et al. A review of metal–organic framework-based membranes for the removal of emerging contaminants from water // Journal of Water Process Engineering. – 2024. https://doi.org/10.1016/j.jwpe.2024.106456

22. Liu, R., Sui, Y., & Wang, X. Metal–organic frameworkbased ultrafiltration membrane separation with capacitivetype for enhanced phosphate removal // Chemical Engineering Journal. – 2019. https://doi.org/10.1016/j.cej.2019.04.136

23. Motshekga, S.C., Oyewo, O.A. & Makgato, S.S. Recent and Prospects of Synthesis and Application of MetalOrganic Frameworks (MOFs) in Water Treatment: A Review // J Inorg Organomet Polym. – 2024. https://doi.org/10.1007/s10904-024-03063-x

24. R. Pathak, M. Punetha, S. Bhatt, S. A. Pillai, P. S. Dhapola, and V. D. Punetha, Organic and inorganic nanofillers for polymer nanocomposites // Advances in Functionalized Polymer Nanocomposites. – Elsevier. – 2024. https://doi.org/10.1016/B978-0-443-18860-2.00003-7

25. S. Xue et al. Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. – 2020. https://doi.org/10.1021/acs.nanolett.9b03780.

26. Razmjou, A., Asadnia, M., Hosseini, E. et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions // Nat Commun. – 2019. https://doi.org/10.1038/s41467-019-13648-7

27. Oviroh, P. O., Jen, T. C., Ren, J., Mohlala, L. M., Warmbier, R., & Karimzadeh, S. Nanoporous MoS2 membrane for water desalination: a molecular dynamics study // Langmuir. – 2021. https://doi.org/10.1021/acs.langmuir.1c00708

28. Henmi, M., Nakatsuji, K., Ichikawa, T., Tomioka, H., Sakamoto, T., Yoshio, M., & Kato, T. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions // Advanced Materials. – 2012. https://doi.org/10.1002/adma.201200108

29. H. Oh et al. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes // ACS Nano. – 2025, https://doi.org/10.1021/acsnano.4c09699

30. Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes // Membranes. – 2021; https://doi.org/10.3390/membranes11020097

31. R. F. M. Elshaarawy, R. M. Abd El-Aal, F. H. A. Mustafa, A. E. Borai, S. Schmidt, and C. Janiak, Dual ionic liquidbased crosslinked chitosan for fine-tuning of antifouling, water throughput, and denitrification performance of polysulfone membrane // Int J Biol Macromol. – 2021. https://doi.org/10.1016/j.ijbiomac.2020.12.186

32. Radu, E.R.; Voicu, S.I.; Thakur, V.K. Polymeric Membranes for Biomedical Applications // Polymers. – 2023. https://doi.org/10.3390/polym15030619

33. Karki, S., Hazarika, G., Yadav, D., & Ingole, P. G. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives // Desalination. – 2024. https://doi.org/10.1016/j.desal.2023.117200

34. Hazarika, B., Ahmaruzzaman, M., Santosh, M. S., Barceló, D., & Rtimi, S. Advances in polymer-based nanocomposite membranes for water remediation: Preparation methods, critical issues and mechanisms // Journal of Environmental Chemical Engineering. – 2023. https://doi.org/10.1016/j.jece.2023.111401

35. Y. A. Ghodke, N. Mayilswamy, and B. Kandasubramanian, Polyamide (PA)- and Polyimide (PI)- based membranes for desalination application // Polymer Bulletin. – 2023. https://doi.org/10.1007/s00289-022-04559-7

36. N. Li et al. MXene-PANI/PES composite ultrafiltration membranes with conductive properties for anti-fouling and dye removal // J Memb Sci. – 2023. https://doi.org/10.1016/j.memsci.2022.121271

37. R. Wu, Y. Tan, F. Meng, Y. Zhang, and Y.-X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation // Desalination. – 2022. https://doi.org/10.1016/j.desal.2022.116013

38. H. Zhao, D. Zhang, H. Sun, Y. Zhao, and M. Xie, Adsorption and detection of heavy metals from aqueous water by PVDF/ATP-CDs composite membrane // Colloids Surf A Physicochem Eng Asp. – 2022. https://doi.org/10.1016/j.colsurfa.2022.128573

39. A. Spoială et al., Preparation and Characterization of Chitosan/TiO2 Composite Membranes as Adsorbent Materials for Water Purification // Membranes (Basel). – 2022. https://doi.org/10.3390/membranes12080804

40. T. F. Ajibade, H. Tian, K. Hassan Lasisi, Q. Xue, W. Yao, and K. Zhang, Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater // Sep Purif Technol. – 2021. https://doi.org/10.1016/j.seppur.2021.119135

41. Z.Liu et al., Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator // Adv Compos Hybrid Mater. – 2021. https://doi.org/10.1007/s42114-021-00364-4

42. M. Barrejón and M. Prato, Carbon Nanotube Membranes in Water Treatment Applications // Adv Mater Interfaces. – 2022. https://doi.org/10.1002/admi.202101260

43. Z. Jin, Q. Chen, Y. Shen, X. Chen, M. Qiu, and Y. Fan, Construction of TiO2-ZrO2 composite nanofiltration membranes for efficient selective separation of dyes and salts // Sep Purif Technol. – 2024. https://doi.org/10.1016/j.seppur.2024.128127

44. Long W., Chen Z., Shi J., Yang S. Efficient Removal of Cr(VI) Ions in Petrochemical Wastewater Using Fe3O4 @Saccharomyces cerevisiae Magnetic Nanocomposite // Nanomaterials. – 2022. https://www.mdpi.com/2079-4991/12/18/3250

45. Li H., Hua J., Li R., Zhang Y., Jin H., Wang S., Chen G. Application of Magnetic Nanocomposites: Core–Shell Fe3O4 Material for Efficient Adsorption of Cr(VI) // Water/ – 2023. https://www.mdpi.com/2073-4441/15/15/2827

46. Zhou W., Wang Y., Zhang J., Zhang Y., et al. Xanthate-Modified Magnetic Fe3O4@SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water // Polymers. – 2022. https://www.mdpi.com/2073-4360/14/6/1107

47. R. Mahdavi Far, B. Van der Bruggen, A. Verliefde, and E. Cornelissen, A review of zeolite materials used in membranes for water purification: history, applications, challenges and future trends // Journal of Chemical Technology & Biotechnology. – 2022. https://doi.org/10.1002/jctb.6963

48. Z.-K. Tan, J.-L. Gong, S.-Y. Fang, J. Li, W.-C. Cao, and Z.-P. Chen, Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal– organic framework (Ag- MOF) for water treatment // Appl Surf Sci. – 2022. https://doi.org/10.1016/j.apsusc.2022.153059

49. Jasim, H. K., Al-Ridah, Z. A., & Naje, A. S. Graphene oxide–carbon nanotube composite membrane for enhanced removal of organic pollutants by forward osmosis // Desalination and Water Treatment. – 2024. https://doi.org/10.1016/j.dwt.2024.100363

50. Kirk, C. H., Wang, P., Chong, C. Y. D., Zhao, Q., Sun, J., & Wang, J. TiO2 photocatalytic ceramic membranes for water and wastewater treatment: Technical readiness and pathway ahead // Journal of Materials Science & Technology. – 2024. https://doi.org/10.1016/j.jmst.2023.09.05

51. Kumari, S., Chowdhry, J., Kumar, M., & Garg, M. C. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects // Environmental Research. – 2024. https://doi.org/10.1016/j.envres.2024.119782

52. Ajith, S., Almomani, F., & Qiblawey, H. Emerging 2D MXene-based polymeric membranes for water treatment and desalination // Journal of Environmental Chemical Engineering. – 2024. https://doi.org/10.1016/j.jece.2024.112078

53. Rodrigues, A. S., Batista, J. G., Rodrigues, M. Á., Thipe, V. C., Minarini, L. A., Lopes, P. S., & Lugão, A. B. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics // Frontiers in Microbiology. – 2024. https://doi.org/10.3389/fmicb.2024.1440065

54. Chamam, B., Ben Dassi, R., Abderraouf, J., Mericq, J. P., Faur, C., Trabelsi, I., ... & Heran, M. Incorporation of Ag- ZnO Nanoparticles into PVDF Membrane Formulation to Enhance Dye Retention, Permeability, and Antibacterial Properties // Polymers. – 2025. https://doi.org/10.3390/polym17091269

55. Xu, T., Qu, R., Zhang, Y., Sun, C., Wang, Y., Kong, X & Ji, C. Amino-Thiol Bifunctional Polysilsesquioxane/Carbon Nanotubes Magnetic Composites as Adsorbents for Hg (II) Removal // Frontiers in Environmental Chemistry. – 2021. https://doi.org/10.3389/fenvc.2021.706254

56. V. P. Kothavale et al., Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb(II), Cd(II), and Ni(II) heavy metal ions from aqueous solutions: Studies of adsorption, kinetics, and isotherms // Journal of Physics and Chemistry of Solids. – 2023. https://doi.org/10.1016/j.jpcs.2022.111089

57. S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon // Journal of Saudi Chemical Society. – 2021. https://doi.org/10.1016/j.jscs.2021.101296

58. Y. Zhang et al. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review // Chemosphere. – 2021. https://doi.org/10.1016/j.chemosphere.2021.130927

59. Z. Shen et al., Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets // Int J Environ Res Public Health. – 2019. https://doi.org/10.3390/ijerph16234659

60. Azam, R. S., Almasri, D. A., Alfahel, R., Hawari, A. H., Hassan, M. K., Elzatahry, A. A., & Mahmoud, K. A. MXene (Ti3C2Tx)/cellulose acetate mixed-matrix membrane enhances fouling resistance and rejection in the crossflow filtration process // Membranes. – 2022. https://doi.org/10.3390/membranes12040406

61. Pandey, R. P., Rasheed, P. A., Gomez, T., Azam, R. S., & Mahmoud, K. A. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2Tx (MXene)/cellulose acetate. Journal of Membrane Science. – 2020. – Vol. 607. – P. 118139. https://doi.org/10.1016/j.memsci.2020.118139

62. I. Ounifi et al., Antifouling Membranes Based on Cellulose Acetate (CA) Blended with Poly(acrylic acid) for Heavy Metal Remediation // Applied Sciences. – 2021. https://doi.org/10.3390/app11104354.

63. Karim, Z., Mathew, A. P., Kokol, V., Wei, J., & Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents // RSC Advances. – 2016. https://doi.org/10.1039/C5RA27059F

64. P. Kallem, N. Elashwah, G. Bharath, H. M. Hegab, S. W. Hasan, and F. Banat, Zwitterion-Grafted 2D MXene (Ti3C2Tx) Nanocomposite Membranes with Improved Water Permeability and Self- Cleaning Properties // ACS Appl Nano Mater. – 2023. https://doi.org/10.1021/acsanm.2c04722

65. L. Qian et al., Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance // RSC Adv. – 2023. https://doi.org/10.1039/D3RA01116J

66. Chai, P. V., Mahmoudi, E., Teow, Y. H., & Mohammad, A. W. Preparation of novel polysulfone-Fe3O4/GO mixedmatrix membrane for humic acid rejection // Journal of Water Process Engineering. – 2017. https://doi.org/10.1016/j.jwpe.2016.06.001

67. A. Zahid et al., Enabling improved PSF nanocomposite membrane for wastewater treatment with selective nanotubular morphology of PANI/ZnO // Mater Adv. – 2024. https://doi.org/10.1039/D4MA00859F

68. A. A. Alotaibi, A. K. Shukla, M. H. Mrad, A. M. Alswieleh, and K. M. Alotaibi, Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater // Membranes (Basel). – 2021. https://doi.org/10.3390/membranes11120935

69. Wang, Y., Xu, H., Ding, M., Zhang, L., Chen, G., Fu, J., Wang, A., Chen, J., Liu, B., Yang, W. MXene-regulation polyamide membrane featuring bubble-like nodule for efficient dye/salt separation and antifouling performance // RSC Advances. – 2022. https://doi.org/10.1039/D2RA00335J

70. Qian, L., Yuan, C., Wang, X., Zhang, H., Du, L., Wei, G., Chen, S. Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance // RSC Advances. – 2023. https://doi.org/10.1039/D3RA01116J

71. Usman, J., Yogarathinam, L. T., Baig, N., Abba, S. I., Chrystie, R., & Aljundi, I. H. MXene-enhanced sulfonated TFN nanofiltration membranes for improved desalination performance // Desalination. – 2024. https://doi.org/10.1016/j.desal.2024.117566

72. Ganji, N., Reardon-Lochbaum, C. A., Ambade, S. B., Anastasia, C. M., Eckhert, P. M., Rosenzweig, Z. & Fairbrother, D. H. Stability of Ti3C2Tx MXenes in engineered environments // Environmental Science: Nano. – 2024. https://doi.org/10.1039/D3EN00438D

73. Xue, Q., & Zhang, K. The preparation of high-performance and stable MXene nanofiltration membranes with MXene embedded in the organic phase // Membranes. – 2021. https://doi.org/10.3390/membranes12010002

74. Zhang, Y., Li, S., Huang, R., He, J., Sun, Y., Qin, Y., & Shen, L. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly (acrylic acid) for effective wastewater treatment // Journal of Membrane Science. – 2022. https://doi.org/10.1016/j.memsci.2022.120360

75. Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W., ... & Kontturi, E. Understanding nanocellulose– water interactions: turning a detriment into an asset // Chemical reviews. – 2023. https://doi.org/10.1021/acs.chemrev.2c0061

76. Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Saalah, S.; Lenggoro, W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes // Membranes. – 2022. https://doi.org/10.3390/membranes12030287

77. Mbisana, M., Keroletswe, N., Nareetsile, F. et al. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment // Cellulose 31. – 2024. https://doi.org/10.1007/s10570-024-06268-y

78. Z. Dai, V. Ottesen, J. Deng, R. M. L. Helberg, and L. Deng, A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 // Separation. – 2019. https://doi.org/10.3390/fib7050040

79. Xu, T., Song, Q., Liu, K. et al. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode // Nano-Micro Lett. – 2023. https://doi.org/10.1007/s40820-023-01073-x

80. Qin, Z., Chen, X., Lv, Y., Zhao, B., Fang, X., & Pan, K. Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel // Chemical Engineering Journal. – 2023. https://doi.org/10.1016/j.cej.2022.138586

81. Sun, Z., Ahmad, M., Gao, Z., Shan, Z., Xu, L., Wang, S., & Jin, Y. Highly ionic conductive and mechanically strong MXene/CNF membranes for osmotic energy conversion // Sustainable Energy & Fuels. – 2022. https://doi.org/10.1039/D1SE01729B

82. Xin, W., Xi, G. Q., Cao, W. T., Ma, C., Liu, T., Ma, M. G., & Bian, J. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding // RSC advances. – 2019. https://doi.org/10.1039/C9RA06399D

83. Chen, R., Tang, H., Dai, Y., Zong, W., Zhang, W., He, G., & Wang, X. Robust bioinspired MXene–hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications // ACS nano. – 2022. https://doi.org/10.1021/acsnano.2c08163

84. Chang, L., Peng, Z., Zhang, T., Yu, C., & Zhong, W. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors // Nanoscale. – 2021. https://doi.org/10.1039/D0NR08090J

85. Yuan T, Zhang Z, Liu Q, Liu X.T, Miao Y.N, Yao C.L. MXene (Ti3C2Tx)/cellulose nanofiber/polyaniline film as a highly conductive and flexible electrode material for supercapacitors // Carbohydr Polym. – 2023. https://doi.org/10.1016/j.carbpol.2022.120519

86. Liu, Z. S., Liu, J., Dai, Y., Li, X. F., Yu, Z. Z., & Zhang, H. B. Bioinspired ultrathin mxene/cnc composite film for electromagnetic interference shielding // J. Inorg. Mater. – 2020. https://doi.org/10.15541/jim20190148

87. M. Xia et al., Bio-inspired high-strength supramolecular fiber membrane by ice-dissolving-regeneration for achieving self-healing, self-cleaning and water purification // Chemical Engineering Journal. – 2024. https://doi.org/10.1016/j.cej.2024.150023

88. E. Pantuso et al., Smart dynamic hybrid membranes with self-cleaning capability // Nature Communications. – 2023. https://doi.org/10.1038/s41467-023-41446-9

89. D. G. Oldal, F. Topuz, T. Holtzl, and G. Szekely, Green Electrospinning of Biodegradable Cellulose Acetate Nanofibrous Membranes with Tunable Porosity // ACS Sustainable Chemistry & Engineering. – 2023. https://doi.org/10.1021/acssuschemeng.2c05676

90. H. Wang et al., Organic molecular sieve membranes for chemical separations // Chemical Society Reviews. – 2021. https://doi.org/10.1039/D0CS01347A

91. M. Shahbabaei and T. Tang, Molecular modeling of thinfilm nanocomposite membranes for reverse osmosis water desalination // PCCP. – 2022. https://doi.org/10.1039/D2CP03839K

92. M. B. Asif and Z. Zhang, Ceramic membrane technology for water and wastewater treatment // Chemical Engineering Journal, – 2021. https://doi.org/10.1016/j.cej.2021.129481

93. M. Issaoui et al., Membrane technology for sustainable water resources management: Challenges and future projections // Sustainable Chemistry and Pharmacy. – 2022. https://doi.org/10.1016/j.scp.2021.100590

94. Lin, H., Wu, M., Zhao, Z., Zhang, F., Zhou, C., Yang, D., ... & Liang, L. Design of High-Performance MXene-Based 2D Membranes for Desalination via Machine Learning and Hybrid Optimization Algorithms // ACS Applied Materials & Interfaces. – 2025. https://doi.org/10.1021/acsami.5c11202

95. S. Tang et al., Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films // Carbohydrate Polymers. – 2023. https://doi.org/10.1016/j.carbpol.2022.120204

96. Xu, Z., Zhu, B., Liu, X., Lan, T., Huang, Y., Zhang, Y., & Wu, D. High-performance electroionic artificial muscles boosted by superior ion transport with Ti3C2Tx MXene/ Cellulose nanocomposites for advanced 3D-motion actuation // Chemical Engineering Journal. – 2023. https://doi.org/10.1016/j.cej.2023.147246

97. S. Wang, Z. Sun, M. Ahmad, and M. Miao, Fabrication of porous MXene/cellulose nanofiber composite membranes for osmotic energy harvesting // IJMS. – 2024. https://doi.org/10.3390/ijms252313226

98. Ghilan, A., Nicu, R., Ciolacu, D. E., & Ciolacu, F. Insight into the latest medical applications of nanocellulose // Materials. – 2023. https://doi.org/10.3390/ma16124447

99. Talipova, A. B., Buranych, V. V., Savitskaya, I. S., Bondar, O. V., Turlybekuly, A., & Pogrebnjak, A. D. Synthesis, properties, and applications of nanocomposite materials based on bacterial cellulose and MXene // Polymers. – 2023. https://doi.org/10.3390/polym1520406

100. Narkkun, T., Kraithong, W., Ruangdit, S., Klaysom, C., Faungnawakij, K., & Itthibenchapong, V. Pebax/modified cellulose nanofiber composite membranes for highly enhanced CO2/CH4 separation // ACS omega. – 2023. https://doi.org/10.1021/acsomega.3c04800

101. Xing, C., Tian, Y., Yu, Z., Li, Z., Meng, B., & Peng, Z. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for highperformance triboelectric nanogenerators // ACS Applied Materials & Interfaces. – 2022. https://doi.org/10.1021/acsami.2c10551

102. Ahmed, B., Hossain, M. J., Al Parvez, A., Talukder, A., Al-Amin, M., Al Mahmud, M. A., & Islam, T. Recent advancements of MXene/nanocellulose‐based hydrogel and aerogel: a review // Advanced Energy and Sustainability Research. – 2024. https://doi.org/10.1002/aesr.202300231

103. Zhang, Y., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. High-performance and stable two-dimensional MXenepolyethyleneimine composite lamellar membranes for molecular separation // ACS Applied Materials & Interfaces. – 2022. https://doi.org/10.1021/acsami.1c20540

104. Xu, T., Song, Q., Liu, K., Liu, H., Pan, J., Liu, W & Zhang, K. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode // Nano-Micro Letters. – 2023. https://doi.org/10.1007/s40820-023-01073-x


Рецензия

Дәйектеу үшін:


Табынбаева А.Т., Сатаева А.Р., Ахметов Н.А., Тастамбек К.Т., Тауанов Ж.Т. MXene ЖӘНЕ НАНОЦЕЛЛЮЛОЗА НЕГІЗІНДЕГІ КОМПОЗИТТІ МЕМБРАНАЛАР: ҚАСИЕТТЕРІ ЖӘНЕ СУДЫ ТАЗАЛАУДАҒЫ ТИІМДІЛІГІ. ҚР ҰЯО жаршысы. 2025;(4):65-78. https://doi.org/10.52676/1729-7885-2025-4-65-78

For citation:


Tabynbayeva A.T., Satayeva A.R., Akhmetov N.A., Tastambek K.T., Tauanov Zh.T. COMPOSITE MEMBRANES BASED ON MXene AND NANOCELLULOSE: PROPERTIES AND WATER PURIFICATION EFFICIENCY. NNC RK Bulletin. 2025;(4):65-78. (In Kazakh) https://doi.org/10.52676/1729-7885-2025-4-65-78

Қараулар: 165

JATS XML


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)