Preview

NNC RK Bulletin

Advanced search

RESISTANCE OF VANADIUM-BASED ALLOYS TO RADIATION-INDUCED SEGREGATION UNDER IRRADIATION WITH HEAVY KRYPTON IONS

https://doi.org/10.52676/1729-7885-2025-4-88-99

Abstract

This work investigated changes in the morphology and elemental composition of alloys based on the V-Nb-Ta-Ti system after irradiation with 84Kr15+ ions with an energy of 147 MeV and an ion fluence of 1·1013–1·1015 cm−2. It was found that irradiation with krypton ions did not lead to significant damage to the surface of V, VNb, VNbTa, VNbTaTi samples, except for the formation of dark spots and chips, the size and number of which decreased from V to VNbTaTi. Scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) analysis showed that the composition of all the initial samples was close to equiatomic. With increasing composition complexity from VNb to the medium entropy alloy (MEA) VNbTa, the radiation-induced segregation of elements in the samples increased, but decreased in the high-entropy alloy (HEA) VNbTaTi. The largest change in concentrations was found in VNbTa, where the Ta concentration increased by 18.5% (4.4 at.% (atomic percents)) compared to the unirradiated sample. It was found that in VNbTa and VNbTaTi, the segregation increased with increasing fluence, and in VNb, the segregation peaked at 1·1014 cm−2 and then decreased. Using the Rutherford backscattering (RBS) analysis, it was shown that in samples irradiated with krypton ions with a fluence of 1·1013 cm−2, the concentration of Ta atoms increased with depth by 33–34% (8.6–12 at.%) relative to the initial concentration. The results of the EDS and RBS analysis showed similar trends. Changes in the concentrations of elements in the near-surface layer of VNb, VNbTa and VNbTaTi for heavy elements Nb, Ta exceeded those for the light ones. The difference in the segregation of elements is probably due to the difference in lattice distortion, local chemical composition, different dependence of the migration of V, Nb, Ta, Ti atoms on vacancies and interstitials. Irradiation with krypton ions resulted in segregation in VNbTa MEA and VNbTaTi HEA, but the distribution of elements over the surface of the samples did not form distinct segregation regions. VNbTaTi HEA showed greater resistance to radiation-induced segregation.

About the Authors

I. A. Ivanov
RSE «Institute of nuclear physics» of the Agency of the RK for Atomic Energy; L.N. Gumilyov Eurasian National University
Казахстан

Almaty

Astana



B. S. Amanzhulov
RSE «Institute of nuclear physics» of the Agency of the RK for Atomic Energy; L.N. Gumilyov Eurasian National University
Казахстан

Almaty

Astana



V. V. Uglov
Belarusian State University
Беларусь

Minsk



S. V. Zlotski
Belarusian State University
Беларусь

Minsk



A. M. Temir
RSE «Institute of nuclear physics» of the Agency of the RK for Atomic Energy; L.N. Gumilyov Eurasian National University
Казахстан

Almaty

Astana



A. D. Sapar
RSE «Institute of nuclear physics» of the Agency of the RK for Atomic Energy; L.N. Gumilyov Eurasian National University
Казахстан

Almaty

Astana



Ye. O. Ungarbaev
RSE «Institute of nuclear physics» of the Agency of the RK for Atomic Energy; L.N. Gumilyov Eurasian National University
Казахстан

Almaty

Astana



Ke Jin
Beijing Institute of Technology
Китай

Beijing



A. E. Ryskulov
RSE «Institute of nuclear physics» of the Agency of the RK for Atomic Energy
Казахстан

Almaty

 



References

1. Zinkle S. J., Tanigawa H., Wirth B. D. Radiation and Thermomechanical Degradation Effects in Reactor Structural Alloys // Structural Alloys for Nuclear Energy Applications: Elsevier, 2019. P. 163–210.

2. English C. A., Hyde J. M., Odette G. R., Lucas G. E., Tan L. Research Tools: Microstructure, Mechanical Properties, and Computational Thermodynamics // Structural Alloys for Nuclear Energy Applications: Elsevier, 2019. P. 103– 161.

3. Pickering E. J., Carruthers A. W., Barron P. J., Middleburgh S. C., Armstrong D. E. J., Gandy A. S. High-Entropy Alloys for Advanced Nuclear Applications // Entropy. – 2021. – Vol. 23, No. 1. – P. 98.

4. Chen W.-Y., Liu X., Chen Y., Yeh J.-W., Tseng K.-K., Natesan K. Irradiation effects in high entropy alloys and 316H stainless steel at 300 °C // Journal of Nuclear Materials. – 2018. – Vol. 510. – P. 421–430.

5. Zhu Z., Chen S., Zhang Q., Li L., Zhao Y., Guo X., Uglov V. V., Jin K., Xue Y. Suppressed defect production and hardening in refractory high entropy alloys under ion irradiation at early stage: A comparative study between VTaTi, HfNbZrTi, and conventional V-4Cr-4Ti // Journal of Materials Science & Technology. – 2025. – Vol. 235. – P. 1–11.

6. Shi T., Su Z., Li J., Liu C., Yang J., He X., Yun D., Peng Q., Lu C. Distinct point defect behaviours in bodycentered cubic medium-entropy alloy NbZrTi induced by severe lattice distortion // Acta Materialia. – 2022. – Vol. 229. – P. 117806.

7. Zhao S., Xiong Y., Ma S., Zhang J., Xu B., Kai J.-J. Defect accumulation and evolution in refractory multiprincipal element alloys // Acta Materialia. – 2021. – Vol. 219. – P. 117233.

8. Zhao S. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure // Journal of Materials Science & Technology. – 2020. – Vol. 44. – P. 133–139.

9. El-Atwani O., Li N., Li M., Devaraj A., Baldwin J. K. S., Schneider M. M., Sobieraj D., Wróbel J. S., Nguyen-Manh D., Maloy S. A., Martinez E. Outstanding radiation resistance of tungsten-based high-entropy alloys // Sci. Adv. – 2019. – Vol. 5, No. 3. – P. eaav2002.

10. Egami T., Guo W., Rack P. D., Nagase T. Irradiation Resistance of Multicomponent Alloys // Metall Mater Trans A. – 2014. – Vol. 45, No. 1. – P. 180–183.

11. Kareer A., Waite J. C., Li B., Couet A., Armstrong D. E. J., Wilkinson A. J. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’ // Journal of Nuclear Materials. – 2019. – Vol. 526. – P. 151744.

12. Parkin C., Moorehead M., Elbakhshwan M., Hu J., Chen W.-Y., Li M., He L., Sridharan K., Couet A. In situ microstructural evolution in face-centered and bodycentered cubic complex concentrated solid-solution alloys under heavy ion irradiation // Acta Materialia. – 2020. – Vol. 198. – P. 85–99.

13. Uglov V. V., Zlotski S. V., Belov M. M., Ryskulov A. E., Jin K., Ivanov I. A., Kurakhmedov A. E., Mustafin D. A., Sapar A. D., Bikhert Y. V. Structural and Phase Changes in Concentrated V–Nb–Ta–Ti Solid Solutions Irradiated by Helium Ions // J. Surf. Investig. – 2023. – Vol. 17, No. 1. – P. 208–215.

14. Zdorovets M., Ivanov I., Koloberdin M., Kozin S., Alexandrenko V., Sambaev E., Kurakhmedov A., Ryskulov A. Accelerator complex based on DC-60 cyclotron. Obninsk: Joint Accelerator Conferences Website (JACoW), 2014. P. 287–289.

15. Doolittle L. R. Algorithms for the rapid simulation of Rutherford backscattering spectra // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 1985. – Vol. 9, No. 3. – P. 344–351.

16. Ziegler J. F., Ziegler M. D., Biersack J. P. SRIM – The stopping and range of ions in matter (2010) // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2010. – Vol. 268, No. 11–12. – P. 1818–1823

17. Was G. S. Fundamentals of radiation materials science: metals and alloys. New York: Springer, 2007. – 827 p.

18. Amroussia A., Avilov M., Boehlert C. J., Durantel F., Grygiel C., Mittig W., Monnet I., Pellemoine F. Swift heavy ion irradiation damage in Ti–6Al–4V and Ti–6Al– 4V–1B: Study of the microstructure and mechanical properties // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2015. – Vol. 365. – P. 515–521.

19. Shiraishi K., Fukaya K., Katano Y. Radiation and anneal hardening in neutron-irradiated vanadium // Journal of Nuclear Materials. – 1974. – Vol. 54, No. 2. – P. 275–285.

20. Komarov F. F. Nano- and microstructuring of solids by swift heavy ions // Phys.-Usp. – 2017. – Vol. 60, No. 5. – P. 435–471.

21. Averback R. S., Rehn L. E., Wagner W., Okamoto P. R., Wiedersich H. In situ Rutherford backscattering analysis of radiation-induced segregation // Nuclear Instruments and Methods in Physics Research. – 1982. – Vol. 194, No. 1–3. – P. 457–460.

22. Averback R. S., Rehn L. E., Wagner W., Ehrhart P. The effect of primary recoil spectrum on radiation induced segregation in nickel-silicon alloys // Journal of Nuclear Materials. – 1983. – Vol. 118, No. 1. – P. 83–90.

23. Amanzhulov B., Ivanov I., Uglov V., Zlotski S., Ryskulov A., Kurakhmedov A., Koloberdin M., Zdorovets M. Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions // Materials. – 2023. – Vol. 16, № 10. – P. 3695.

24. Fan Z., Zhong W., Jin K., Bei H., Osetsky Y. N., Zhang Y. Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy // Journal of Materials Research. – 2021. – Vol. 36, № 1. – P. 298–310.


Supplementary files

Review

For citations:


Ivanov I.A., Amanzhulov B.S., Uglov V.V., Zlotski S.V., Temir A.M., Sapar A.D., Ungarbaev Ye.O., Jin K., Ryskulov A.E. RESISTANCE OF VANADIUM-BASED ALLOYS TO RADIATION-INDUCED SEGREGATION UNDER IRRADIATION WITH HEAVY KRYPTON IONS. NNC RK Bulletin. 2025;(4):88-99. (In Russ.) https://doi.org/10.52676/1729-7885-2025-4-88-99

Views: 140

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)