Preview

Вестник НЯЦ РК

Расширенный поиск

ОБЗОР КОНЦЕПЦИИ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ

https://doi.org/10.52676/1729-7885-2023-1-25-39

Полный текст:

Аннотация

В статье представлен обзор результатов исследований высокоэнтропийных сплавов, описывающие принципы их образования, базовые понятия и свойства высокоэнтропийных сплавов. Перечислены существующие категории энтропийных сплавов. Описаны эффекты, возникающие вследствие образования высокоэнтропийных сплавов: высокая энтропия, искажение решетки, замедленная диффузия и эффект перемешивания. Отмечается, что традиционные термодинамические представления для многокомпонентных сплавов требуют дополнения. Также отмечается, что применение правил Юм-Розери для предсказывания фазового состава высокоэнтропийных сплавов показывает некоторые затруднения, так как трудно подобрать большое количество элементов, имеющих одинаковый тип решетки и валентности. Описаны результаты анализа ряда параметров и условий, которые, по мнению исследователей, влияют на структурное состояние создаваемых высокоэнтропийных сплавов, учет которых мог бы позволить корректно предсказать формирование структур в высокоэнтропийных сплавах. Анализ литературных данных показал, что в настоящее время не существует универсального параметра, который мог бы позволить корректно предсказать формирование структур в многокомпонентных системах сплавов. Представлены методы подготовки порошков высокоэнтропийных сплавов. Рассмотрены результаты работ часто используемых методов получения покрытий на основе высокоэнтропийных сплавов, таких как лазерная наплавка, магнетронное напыление, электрохимическое осаждение и термическое напыление. Описаны недостатки при получении покрытий данными методами.

Об авторах

Е. Е. Камбаров
Восточно-Казахстанский технический университет им. Д. Серикбаева; Назарбаев Интеллектуальная школа химико-биологического направления г. Усть-Каменогорск
Казахстан

Камбаров Едыржан Ержанулы.

Усть-Каменогорск



Г. К. Уазырханова
Восточно-Казахстанский технический университет им. Д. Серикбаева
Казахстан

Усть-Каменогорск



М. Рутковска-Горчица
Вроцлавский университет науки и технологий
Польша

Вроцлав



А. Е. Кусайнов
Восточно-Казахстанский технический университет им. Д. Серикбаева
Казахстан

Усть-Каменогорск



Список литературы

1. Quiambao K. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions / K. Quiambao, S. McDonnell, D. Schreiber, A. Gerard, K. Freedy, P. Lu, J. Saal, G. Frankel, J. Scully // Acta Materialia. – 2019. – Vol. 164. – P. 362–376. https://doi.org/10.1016/j.actamat.2018.10.026

2. Qiu Y. Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys / Y. Qiu, S. Thomas, D. Fabijanic, A. Barlow, H. Fraser, N. Birbilis // Materials & Design. – 2019. – Vol. 170. – A. 107698. https://doi.org/10.1016/j.matdes.2019.107698

3. Joseph J. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures / J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, D. Fabijanic // Wear. – 2019. – Vol. 428–429. – P. 32–44. https://doi.org/10.1016/j.wear.2019.03.002

4. Yang T. Control of nanoscale precipitation and elimination of intermediate temperature embrittlement in multicomponent high-entropy alloys / T. Yang, Y. Zhao, L. Fan, J. Wei, J. Luan, W. Liu, C. Wang, Z. Jiao, J. Kai, C. Liu // Acta Materialia. – 2020. – Vol. 189. – P. 47–59. https://doi.org/10.1016/j.actamat.2020.02.059

5. MacDonald B. Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy / B. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, E. Lavernia // Acta Materialia. – 2019. – Vol. 181. – P. 25– 35. https://doi.org/10.1016/j.actamat.2019.09.030

6. Wu Y. High strength NiMnFeCrAlCu multi-principal-element alloys with marine application perspective / Y. Wu, Y. Li, X. Liu, Q. Wang, X. Chen, X. Hui // Scripta Materialia. – 2021. – Vol. 202. – A. 113992. https://doi.org/10.1016/j.scriptamat.2021.113992

7. Cantor B. Microstructural development in equiatomic multicomponent alloys / B. Cantor, P. Chang, P. Knight, A. Vincent // Materials Science and Engineering: A. – 2004. – Vol. 375–377. – P. 213–218. https://doi.org/10.1016/j.msea.2003.10.257

8. Zhao Y. Heterogeneous precipitation behavior and stacking-faultmediated deformation in a CoCrNi-based medium-entropy alloy / Y. Zhao, T. Yang, Y. Tong, J. Wang, J. Luan, Z. Jiao, D. Chen, Y. Yang, A. Hu, C. Liu, J. Kai // Acta Materialia. – 2017. – Vol. 138. – P. 72–82. https://doi.org/10.1016/j.actamat.2017.07.029

9. Chang H. Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off / H. Chang, T. Zhang, S. Ma, D. Zhao, R. Xiong, T. Wang, Z. Li, Z. Wang // Materials & Design. – 2021. – Vol. 197.– A. 109202. https://doi.org/10.1016/j.matdes.2020.109202

10. Shuang S. Corrosion resistant nanostructured eutectic high entropy alloy / S. Shuang, Z. Ding, D. Chung, S. Shi, Y. Yang // Corrosion Science. - 2019. – Vol. 164. – A. 108315. https://doi.org/10.1016/j.corsci.2019.108315

11. Zhao Y. Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 highentropy alloy / Y. Zhao, H. Chen, Z. Lu, T. Nieh // Acta Materialia. – 2018. – Vol. 147. – P. 184–194. https://doi.org/10.1016/j.actamat.2018.01.049

12. Senkov O. High temperature strength of refractory complex concentrated alloys / O. Senkov, S. Gorsse, D. Miracle // Acta Materialia. – 2019. – Vol. 175. – P. 394– 405. https://doi.org/10.1016/j.actamat.2019.06.032

13. Zhang M. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding / M. Zhang, X. Zhou, X. Yu, J. Li // Surface and Coatings Technology. – 2017. – Vol. 311. – P. 321–329. https://doi.org/10.1016/j.surfcoat.2017.01.012

14. Yeh J-W. Recent progress in high-entropy alloys / J-W Yeh // Annales de Chimie - Science des Matériaux. – 2006. – Vol. 31. – P. 633–648. https://doi.org/10.3166/acsm.31.633-648

15. Todai M. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials / M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano // Scripta Materialia. – 2017. – Vol. 129. – P. 65–68. https://doi.org/10.1016/j.scriptamat.2016.10.028

16. Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications / B. Gludovatz, A. Hohenwarter, D. Catoor, E. Chang, E. George, R. Ritchie // Science. – 2014. – Vol. 345. – P. 1153–1158. https://doi.org/10.1126/science.1254581

17. Xu X. Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains / X. Xu, P. Liu, A. Hirata, S. Song, T. Nieh, M. Chen // Materialia. – 2008. – Vol. 4. – P. 395-405. https://doi.org/10.1016/j.mtla.2018.10.015

18. Xu X. Temperature-dependent compression behavior of an Al0.5CoCrCuFeNi high-entropy alloy / X. Xu, S. Chen, Y. Ren, A. Hirata, T. Fujita, P. Liaw, M. Chen // Materialia. – 2019. – Vol. 5. – A. 100243. https://doi.org/10.1016/j.mtla.2019.100243

19. Ni C. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding / C. Ni, Y. Shi, J. Liu, G. Huang // Optics & Laser Technology. – 2018. – Vol. 105. – P. 257-263. https://doi.org/10.1016/j.optlastec.2018.01.058

20. Gottshtain G. Fiziko-himicheskie osnovy materialovedeniya / G. Gottshtain – Мoscow: Binom, Laboratoriya znanii, 2009, – 400 p.

21. Miracle B. A critical review of high entropy alloys and related concepts / D. Miracle, O. Senkov // Acta Materialia. – 2017. – Vol. 122. – P. 448-511. https://doi.org/10.1016/j.actamat.2016.08.081

22. Vaidya M. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying / M. Vaidya, A. Prasad, A. Parakh, B. Murty // Materials & Design. – 2017. – Vol. 126. – P. 37–46. https://doi.org/10.1016/j.matdes.2017.04.027

23. Miracle D. Exploration and development of high entropy alloys for structural applications / D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, J. Tiley // Entropy. – 2014. – Vol. 16(1). – P. 494–525. https://doi.org/10.3390/e16010494

24. Kumar A. Mechanically alloyed high entropy alloys: existing challenges and opportunities / A. Kumar, А. Singh, A.Suhane // Journal of materials research and technology. – 2022. – Vol. 17. – P. 2431–2456. https://doi.org/10.1016/j.jmrt.2022.01.141

25. Tsai M-H. Physical properties of high entropy / M-H Tsai // Entropy. - 2013. – Vol. 15(12). – P. 5338–5345. https://doi.org/10.3390/e15125338.

26. Yeh J-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys / Yeh J-W // The journal of the Minerals, Metals & Materials Society. – 2013. – Vol. 65. – P. 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

27. Senkov O. Refractory high-entropy alloys / O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw // Intermetallics. – 2010. – Vol. 18. – P. 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

28. Senkov O. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys / O. Senkov, G. Wilks, J. Scott, D. Miracle // Intermetallics. – 2011. – Vol. 19(5). – P. 698–706. https://doi.org/10.1016/j.intermet.2011.01.004

29. Tong C-J. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements / C-J. Tong, M-R.Chen, J-W. Yeh, S-J. Lin, P-H. Lee, T-T. Shun, S-Y. Chang // Metallurgical and Materials Transactions. – 2005. – Vol. 36. – P. 1263– 1271. https://doi.org/10.1007/s11661-005-0218-9

30. Tong C-J. Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements / C-J. Tong, Y-L. Chen, J-W. Yeh, S-K.Chen, J-W. Yeh, T-T. Shun, C-H.Tsau, S-J.Lin, S-Y.Chang // Metallurgical and Materials Transactions. – 2005. – Vol. 36. – P. 881–893. https://doi.org/10.1007/s11661-005-0283-0

31. Li A. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements / A. Li, X. Zhang // Acta Metallurgica Sinica (English Letters). – 2009. – Vol. 22. – P. 219–224. https://doi.org/10.1016/S1006-7191(08)60092-7

32. del Grosso M. Determination of the transition to the high entropy regime for alloys of refractory elements / M. del Grosso, G. Bozzolo, H. Mosca // Journal of Alloys and Compounds. – 2012. – Vol. 534. – P. 25–31. https://doi.org/10.1016/j.jallcom.2012.04.053

33. Ng C. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy / C. Ng, S. Guo, J. Luan, S. Shi, C. Liu // Intermetallics. – 2012. – Vol. 31. – P. 165–172. https://doi.org/10.1016/j.intermet.2012.07.001

34. Lucas M. Absence of long-range chemical ordering in equimolar FeCoCrNi / M. Lucas, G. Wilks, L. Mauger, J. Munoz, O. Senkov, E. Michel, J. Horwath, S. Semiatin, M. Stone, D. Abernathy, E. Karapetrova // Applied Physics Letters. – 2012. – Vol. 100. – A. 251907. https://doi.org/10.1063/1.4730327

35. Tsai M. High-Entropy Alloys: A Critical Review / M. Tsai, J. Yeh // Materials Research Letters. – 2014. – Vol. 2(3). – P. 107–123. https://doi.org/10.1080/21663831.2014.912690

36. Yeh J-W. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi– principal elements / J-W. Yeh, S–Y. Chang, Y–D. Hong, S-K. Chen, S–J. Lin // Materials Chemistry and Physics. – 2007. – Vol. 103. – P. 41–46. https://doi.org/10.1016/j.matchemphys.2007.01.003

37. Cullity B. Elements of X-Ray Diffraction. / B.D. Cullity, S.R. Stock. – New York: Pearson, 2001. – 696 p.

38. Pearson W. A Handbook of Lattice Spacing and Structures of Metals and Alloys / W.B. Pearson. – New York: Pergamon Press, 1967. – 1446 p.

39. Lonsdale K. International Tables for X-Ray Crystallography / K. Lonsdale, N. Henry. – Birmingham: Kynoch Press, 1968. – 362 p.

40. Tsai K-Y. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys / K-Y. Tsai, M-H. Tsai, J-W. Yeh // Acta Materialia. – 2013. – Vol. 61. – P. 4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058

41. Liu W. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy / W. Liu, Y. Wu, J. He, T. Nieh, Z. Lu // Scripta Materialia. – 2013. – Vol. 68. – P. 526–529. https://doi.org/10.1016/j.scriptamat.2012.12.002

42. Hsu C. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys / C. Hsu, C. Juan, W. Wang, T. Sheu, J. Yeh, S. Chen // Materials Science and Engineering: A. – 2011. – Vol. 528. – P. 3581–3588. https://doi.org/10.1016/j.msea.2011.01.072

43. Yeh J-W. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes / J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsai, S-Y. Chang // Advanced Engineering Materials. – 2004. – Vol. 6. – P. 299–303. https://doi.org/10.1002/adem.200300567

44. Shun T-T. Formation of ordered/disordered nanoparticles in FCC high entropy alloys / T-T.Shun, C-H.Hung, C-F.Lee // Journal of Alloys and Compounds. – 2010. – Vol. 493. – P. 105–109. https://doi.org/10.1016/j.jallcom.2009.12.071

45. Tsai M-H. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy / M-H.Tsai, H. Yuan, G. Cheng, W. Xu, K-Y. Tsai, C-W. Tsai, W. Jian, C-C. Juan, W-J. Shen, M-H. Chuang, J-W. Yeh, Y. Zhu // Intermetallics. – 2013. – Vol. 32. – P. 329– 336. https://doi.org/10.1016/j.intermet.2012.07.036

46. Pogrebnyak A. The structure and properties of high-entropy alloys and nitride coatings based on them / A. Pogrebnyaka, A. Bagdasaryana, I. Yakushchenkoa, V. Beresnevb // Russian Chemistry Reviews. – 2014. – Vol. 83. – P. 1027–1061. https://doi.org/10.1070/rcr4407

47. Oates W. Configurational Entropies of Mixing in Solid Alloys // Journal of Phase Equilibria and Diffusion / W. Oates // Journal of Phase Equilibria and Diffusion. – 2007. – Vol. 28. – P. 79–89. https://doi.org/10.1007/s11669-006-9008-3

48. Swalin R. Thermodynamics of solids / R. Swalin, E. Burke, B. Chalmers, J. Krumhansl. – New York: John Wiley & Sons, 1991 – 388 p.

49. Zhang Y. Solid Solution Formation Criteria for High Entropy Alloys / Y. Zhang, Y. Zhou // Materials Science Forum. – 2007. – Vol. 561–565. – P. 1337–1339. https://doi.org/10.4028/www.scientific.net/MSF.561-565.1337

50. Senkov O. Microstructure and room temperature mechanical properties of a high-entropy TaNbHfZrTi alloy / O. Senkov, J. Scott, S. Senkova, D. Miracle, C. Woodwart // Intermetallics. – 2011. – Vol. 509. – P. 6043–6048. https://doi.org/10.1016/j.jallcom.2011.02.171

51. Gail A. Tensile Properties of high- and medium-entropy alloys / A. Gali, E. George // Intermetallics. – 2013. – Vol. 39. – P. 74–78. https://doi.org/10.1016/j.intermet.2013.03.018

52. Jiang L. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot / L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li // Intermetallics. – 2004. – Vol. 44. – P. 37–43. https://doi.org/10.1016/j.intermet.2013.08.016

53. Shun T-T. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys / T-T. Shun, L-Y. Chang, M-H. Shiu // Materials Characterization. – 2012. – Vol. 70. – P. 63–67. https://doi.org/10.1016/j.matchar.2012.05.005

54. Senkov O. A topological model for metallic glass formation / O. Senkov, D. Miracle // Journal of Non-Crystalline Solids. – 2003. – Vol. 317. – P. 34–39. https://doi.org/10.1016/S0022-3093(02)01980-4

55. Takeuchi A. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter / A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, J. Yeh // Intermetallics. – 2011. – Vol. 19. – P. 1546–1554. https://doi.org/10.1016/j.intermet.2011.05.030

56. Marques F. Mg-containing multi-principal element alloys for hydrogen storage: A study of the MgTiNbCr0. 5Mn0. 5Ni0. 5 and Mg0. 68TiNbNi0.55 compositions / F. Marques, H. Pinto, S. Figueroa, F. Winkelmann, M. Felderhoff, W. Botta, G. Zepon // International Journal of Hydrogen Energy. – 2020. – Vol. 45. – P. 19539–19552. https://doi.org/10.1016/j.ijhydene.2020.05.069

57. Singh S. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy / S. Singh, N. Wanderka, B. Murty, U. Glatzel, J. Banhart // Acta Materialia. – 2011. – Vol. 59. – P. 182–190. https://doi.org/10.1016/j.actamat.2010.09.023

58. Yeh J-W. Alloy design strategies and future trends in high-entropy alloys / J-W. Yeh // The Journal of The Minerals, Metals & Materials Society – 2013. – Vol. 65.– P. 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

59. Zhang Y. Alloy Design and Properties Optimization of High-Entropy Alloys / Y. Zhang, X. Yang, P. Liaw // The Journal of The Minerals, Metals & Materials Society. – 2012. – Vol. 65. – P. 830–838. https://doi.org/10.1007/s11837-012-0366-5

60. Zhang Y. Solid-Solution Phase Formation Rules for Multicomponent Alloys // Advanced Engineering Materials / Y. Zhang, Y. Zhou, J. Lin, G. Chen, P. Liaw // Advanced Engineering Materials. – 2008. – Vol. 10(6). – P. 534– 538. https://doi.org/10.1002/adem.200700240

61. Fang S. Relationship between the widths of supercooled liquid region and bond parameters of Mg-based bulk metallic glasses / S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong // Journal of Non-Crystalline Solids. – 2003. – Vol. 321. – P. 120–125. https://doi.org/10.1016/S0022-3093(03)00155-8

62. Takeuchi A. Quantitative evaluation on critical cooling rate for metallic glasses / A. Takeuchi, A. Inoue // Materials Science and Engineering: A. – 2001. – Vol. 304–306. – P. 446–451. https://doi.org/10.1016/S0921-5093(00)01446-5

63. Yang X. Prediction of high-entropy stabilized solid-solution in multi-component alloys. / X. Yang, Y. Zhang // Materials Chemistry and Physics. – 2012. – Vol. 132. – P. 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

64. Mann J. Configuration Energies of the Main Group Elements / J. Mann, T. Meek, L. Allen // Journal of the American Chemical Society. – 2000. – Vol. 122. – P. 2780–2783. https://doi.org/10.1021/ja992866e

65. Guo S. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys / S. Guo, C. Ng, J. Lu, C. Liu // Journal of Applied Physics. – 2011. – Vol. 109. – A. 103505. https://doi.org/10.1063/1.3587228

66. Rahm M. Atomic and ionic radii of elements 1–96 / M. Rahm, R. Hoffmann, N. Ashcroft // Chemistry–A European Journal. – 2016. – Vol. 22. – P. 14625–14632. https://doi.org/10.1002/chem.201602949

67. Li K. Estimation of electronegativity values of elements in different valence states / K. Li, D. Xue // The Journal of Physical Chemistry A. – 2006. – Vol. 110. – P. 11332– 11337. https://doi.org/10.1063/1.1742493

68. Zhang Y. Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states / Y. Zhang // Inorganic Chemistry. – 1982. – Vol. 21. – P. 3886–3889. https://doi.org/10.1021/ic00141a005

69. James A.M. Macmillan's Chemical and Physical Data / A.M. James, M.P. Lord. – Basingstoke: Macmillan Press, 1993. – 565 p.

70. Samsonov G. V. Handbook of the Physicochemical Properties of the Elements / G. V. Samsonov. – New York: Springer, 1968. – 942 p.

71. Mizutani U. Hume-Rothery rules for structurally complex alloy phases / U. Mizutani // Materials Research Society Bulletin. – 2012. – Vol. 37. – P. 169. https://doi.org/10.1557/mrs.2012.45

72. Miracle D. Topological criterion for metallic glass formation / D. Miracle, O. Senkov // Material Science and Engineering: A. – 2003. – Vol. 347. – P. 50–58. https://doi.org/10.1016/S0921-5093(02)00579-8

73. Poletti M. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems / M. Poletti, L. Battezzati // Acta Materialia. – 2014. – Vol. 75. – P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033

74. Fan Y. AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy / Y. Fan, Y. Zhang, H. Guan, H. Suo, L. He // Rare Metal Materials and Engineering. – 2013. – Vol. 42. – P. 1127–1129. https://doi.org/10.1016/S1875-5372(13)60074-0

75. Veronesi P. Microwave - Assisted preparation of high entropy alloys / P. Veronesi, R. Rosa, E. Colombini, C. Leonelli // Technologies. – 2015. – Vol. 3. – P. 182–197. https://doi.org/10.3390/technologies3040182

76. Qiu X-W. Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy / X-W. Qiu, C-X. Huang, M-J. Wu, C-G. Liu, Y-P. Zhang // Journal of Alloys and Compounds. – 2016. – Vol. 658. – P. 1–5. https://doi.org/10.1016/j.jallcom.2015.10.224

77. Colombini E. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating / E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, P. Veronesi // // Materials Chemistry and Physics. – 2018. – Vol. 210. – P. 78–86. https://doi.org/10.1016/j.matchemphys.2017.06.065

78. Zhang A. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture / A. Zhang, J. Han, J. Meng, B. Su, P. Li // Materials Letters. – 2016. – Vol. 181. – P. 82–85. https://doi.org/10.1016/j.matlet.2016.06.014

79. Veronesi P. Microwave processing of high entropy alloys: A powder metallurgy approach / P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, M. Garuti // Chemical Engineering and Processing: Process Intensification. – 2017. – Vol. 122. – P. 397–403. https://doi.org/10.1016/j.cep.2017.02.016

80. Holmstrom E. High entropy alloys: substituting for cobalt in cutting edge technology / E. Holmstrom, R. Lizarraga, D. Linder, A. Salmasi, W. Wang, B. Kaplan, H. Mao, H. Larsson, V. Levente // Applied Materials Today. – 2018. – Vol. 12. – P. 322–329. https://doi.org/10.1016/j.apmt.2018.07.001

81. Waseem O. The effect of Ti on the sintering and mechanical properties of refractory highentropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials / O. Waseem, J. Lee, H. Lee // Materials Chemistry and Physics. – 2018. – Vol. 210. – P. 87–94. https://doi.org/10.1016/j.matchemphys.2017.06.054

82. Tian Y. Microstructures and oxidation behavior of Al-CrMnFeCoMoW composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method / Y. Tian, Y. Shen, C. Lu, X. Feng // Journal of Alloys and Compounds. – 2019. – Vol. 779. – P. 456–465. https://doi.org/10.1016/j.jallcom.2018.11.266

83. Oleszak D. High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying / D. Oleszak, A. Antolak-Dudka, T. Kulik // Materials Letters. – 2018. – Vol. 232. – P. 160–162. https://doi.org/10.1016/j.matlet.2018.08.060

84. Suryanarayana C. Mechanical alloying and milling / C. Suryanarayana // Progress in Materials Science – 2001. – Vol. 46. – P. 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

85. Lee S. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation / S. Lee, S. Byeon, H. Kim, H. Jin, S. Lee // Materials &Design. – 2021. – Vol. 197. – A. 109260. https://doi.org/10.1016/j.matdes.2020.109260

86. Fu X. Materials selection considerations for high entropy alloys / X. Fu, C. Schuh, E. Olivetti // Scripta Materialia. – 2017. – Vol. 138. – P. 145–150. https://doi.org/10.1016/j.scriptamat.2017.03.014

87. Sharma A. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy / A. Sharma, M. Oh, B. Ahn // Materials Science and Engineering: A. – 2020. – Vol. 797. – A. 140066. https://doi.org/10.1016/j.msea.2020.140066

88. Youssef K. A novel low-density, high-hardness, high entropy alloy with close-packed single-phase nanocrystalline structures / K. Youssef, A. Zaddach, C. Niu, D. Irving, C. Koch // Materials Research Lettets. – 2014. – Vol. 3. – P. 95–99. https://doi.org/10.1080/21663831.2014.985855

89. Chae M. Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy / M. Chae, A. Sharma, M. Oh, B. Ahn // Metals and Materials International. – 2021. – Vol. 27. – P. 629–638. https://doi.org/10.1007/s12540-020-00823-5

90. Heydari H. Computational analysis of novel AlLiMgTiX light high entropy alloys / H. Heydari, M. Tajally, A. Habibolahzadeh // Materials Chemistry and Physics. – 2022. – Vol. 280. – A. 125834. https://doi.org/10.1016/j.matchemphys.2022.125834

91. Lin S-Y. Mechanical performance and nanoindenting deformation of (AlCrTa-TiZr)NCy multi-component coatings co-sputtered with bias / S-Y. Lin, S-Y. Chang, Y-C. Huang, F-S. Shieu, J-W. Yeh // Surface and Coating Technology. – 2012. – Vol. 206. – P. 5096–5102. https://doi.org/10.1016/j.surfcoat.2012.06.035

92. Wan H. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment / H. Wan, D. Song, X. Shi, Y. Cai, T. Li, C. Chen // Journal of Materials Science & Technology. – 2021. – Vol. 60. – P. 197–205. https://doi.org/10.1016/j.jmst.2020.07.001

93. Barron P. Towards V-based high-entropy alloys for nuclear fusion applications / P. Barron, A. Carruthers, J. Fellowes, N. Jones, H. Dawson, E. Pickering // Scripta Materialia. – 2020. – Vol. 176. – P. 12–16. https://doi.org/10.1016/j.scriptamat.2019.09.028

94. Guo Y. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings / Y. Guo, X. Shang, Q. Liu // Surface and Coatings Technology – 2018. – Vol. 344. – P. 353–358. https://doi.org/10.1016/j.surfcoat.2018.03.035

95. Li X. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding / X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, P. Bai // Journal of Alloys Compounds. – 2019. – Vol. 788. – P. 485–494. https://doi.org/10.1016/j.jallcom.2019.02.223

96. Cheng J. Evolution of microstructure and mechanical properties of in situ synthesized TiC–TiB2/CoCrCuFeNi high entropy alloy coatings / J. Cheng, D. Liu, X. Liang, Y. Chen // Surface and Coatings Technology. – 2015. – Vol. 281. – P. 109–116. https://doi.org/10.1016/j.surfcoat.2015.09.049

97. Tsai D-C. Solid solution coating of (TiVCrZrHf)N with unusual structural evolution / D-C. Tsai, Z-C. Chang, L-Y. Kuo, T-J. Lin, T-N. Lin, F-S. Shieu // Surface and Coatings Technology. – 2013. – Vol. 217. – P. 84–87. https://doi.org/10.1016/j.surfcoat.2012.11.077

98. Chang S-Y. 4-nm thick multilayer structure of multicomponent (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects / S-Y. Chang, C-E. Li, S-C. Chiang, Y-C. Huang // Journal of Alloys Compounds. – 2012. – Vol. 515. – P. 4–7. https://doi.org/10.1016/j.jallcom.2011.11.082

99. Guo Y. A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model / Y. Guo, X. Li, Q. Liu // Materials & Design. – 2020. – Vol. 196. – A. 109085. https://doi.org/10.1016/j.matdes.2020.109085

100. Qiu X. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high entropy alloy coatings / X. Qiu, Y. Zhang, C. Liu // Journal of Alloys Compounds. – 2014. – Vol. 585. – P. 282–286. https://doi.org/10.1016/j.jallcom.2013.09.083

101. Nam S. Recent studies of the laser cladding of high entropy alloys./ S. Nam, C. Kim, Y-M. Kim // Journal of Welding and Joining. – 2017. – Vol. 35. – P. 58–66. https://doi.org/10.5781/JWJ.2017.35.4.9

102. Yue T. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates / T. Yue, H. Xie, X. Lin, H. Yang, G. Meng // Journal of Alloys Compounds. – 2014. – Vol. 587. – P. 588–593. https://doi.org/10.1016/j.jallcom.2013.10.254

103. Katama S. Laser assisted high entropy alloy coating on aluminum: microstructural evolution / Katakam, S. Joshi, S. Mridha, S. Mukherjee, N. Dahotre // Journal of Applied Physics. – 2014. – Vol. 116. – A. 104906. https://doi.org/10.1063/1.4895137

104. Shon Y. Laser additive synthesis of high entropy alloy coating on aluminum: corrosion behavior / Y. Shon, S. Joshi, S. Katakam, R. Rajamure, N. Dahotre // Materials Letters. – 2015. – Vol. 142. – P. 122–125. https://doi.org/10.1016/j.matlet.2014.11.161

105. Velasco S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering / S. Velasco, A. Cavaleiro, S. Carvalho // Progress in Materials Science. – 2016. – Vol. 84. – P. 158–191. https://doi.org/10.1016/j.pmatsci.2016.09.005

106. Frey H. H.R. Handbook of Thin Film Technology / H. Frey, H. Khan. – Berlin: Springer, 2010. – 380 p.

107. Lai C-H. Mechanical and tribological properties of multi element (AlCrTaTiZr)N coatings / C-H. Lai, K-H. Cheng, S-J. Lin, J-W. Yeh // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 3732–3738. https://doi.org/10.1016/j.surfcoat.2008.01.014

108. Luo D. Design and Characterization of self-lubricating refractory high entropy alloy based multilayered films / D. Luo, Q. Zhou, W. Ye, C. Greiner, Y. He, H. Wang // ACS Applied Materials & Interfaces. – 2021. – Vol. 13. – P. 55712–55725. https://doi.org/10.1021/acsami.1c16949

109. Lu P. Computational materials design of a corrosion resistant high entropy alloy for harsh environments / P. Lu, J. Saal, G. Olson, T. Li, O. Swanson, G. Frankel, A. Gerard, K. Quiambao, J. Scully // Scripta Materialia. – 2018. – Vol. 153. – P. 19–22. https://doi.org/10.1016/j.scriptamat.2018.04.040

110. Dou D. Coatings of FeAlCoCuNiV high entropy alloy / D. Dou, X. Li, Z. Zheng, J. Li // Surface Engineering. – 2016. – Vol. 32. – P. 766–770. https://doi.org/10.1080/02670844.2016.1148380

111. Zhao S. Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding / S. Zhao, C. Liu, J. Yang, W. Zhang, L. He, R. Zhang, H. Yang, J. Wang, J. Long, H. Chang // Surface and Coatings Technology. – 2021. – Vol. 417. – A. 127228. https://doi.org/10.1016/j.surfcoat.2021.127228

112. Padamata S. Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review / S. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir // Metals. – 2022. – Vol. 12. – A. 319. https://doi.org/10.3390/met12020319

113. Yurov M. High entropic coatings FeCrNiTiZrAl and their properties / V. Yurov, A. Berdibekov, N. Belgibekov, K. Makhanov // Bulletin of the university of Karaganda-Physics. – 2021. – Vol. 3. – P. 101–114. https://doi.org/10.31489/2021Ph3/101-114

114. Lai C-H. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings / C-H. Lai, S-J. Lin, J-W. Yeh, S-Y. Chang // Surface and Coatings Technology. – 2006. – Vol. 201. – P. 3275–3280. https://doi.org/10.1016/j.surfcoat.2006.06.048

115. Chen T. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering / T. Chen, T. Shun, J. Yeh, M. Wong // Surface and Coatings Technology. – 2004. – Vol. 188–189. – P. 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023

116. Ren B. Structure and mechanical properties of multielement (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering./ B. Ren, Z. Shen, Z. Liu // Journal of Alloys Compounds. – 2013. – Vol. 560. – P. 171–176. https://doi.org/10.1016/j.jallcom.2013.01.148

117. Tsai D-C. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering / D-C. Tsai, M-J. Deng, Z-C. Chang, B-H. Kuo, E-C. Chen, S-Y. Chang, F-S. Shieu // Journal of Alloys Compounds. – 2015. – Vol. 647. – P. 179–188. https://doi.org/10.1016/j.jallcom.2015.06.025

118. Zhang W. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/(AlCrMoNbZr)N / W. Zhang, R. Tang, Z. Yang, C. Liu, H. Chang, J. Yang, J. Liao, Y. Yang, N. Liu // Journal of Nuclear Materials. – 2018. – Vol. 512. – P. 15–24. https://doi.org/10.1016/j.jnucmat.2018.10.001

119. Li H. Controllable electrochemical synthesis and magnetic behaviors of Mg–Mn–Fe–Co–Ni–Gd alloy films / H. Li, H. Sun, C. Wang, B. Wei, C. Yao, Y. Tong, H. Ma // Journal of Alloys Compounds. – 2014. – Vol. 598. – P. 161–165. https://doi.org/10.1016/j.jallcom.2014.02.051

120. Soare V. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films / V. Soare, M. Burada, I. Constantin, D. Mitrica, V. Badilita, A. Caragea, M. Tarcolea // Applied Surface Science. – 2015. – Vol. 358. – P. 533–539. https://doi.org/10.1016/j.apsusc.2015.07.142

121. Yao C. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm / C. Yao, B. Wei, P. Zhang, X. Lu, P. Liu, Y. Tong // Journal of Rare Earths. – 2011. – Vol. 29. – P. 133–137. https://doi.org/10.1016/S1002-0721(10)60418-8

122. Liu L. Effects of temperature and atmosphere on microstructure and tribological properties of plasma sprayed FeCrBSi coatings / L. Liu, J-K. Xiao, X. Wei, Y. Ren, G. Zhang, C. Zhang // Journal of Alloys Compounds. – 2018. – Vol. 753. – P. 586–594. https://doi.org/10.1016/j.jallcom.2018.04.247

123. Wang R. Effect of spraying parameters on the crystallinity and microstructure of solution precursor plasma sprayed coatings / R. Wang, J. Duan, F. Ye // Journal of Alloys Compounds. – 2018. – Vol. 766. – P. 886–893. https://doi.org/10.1016/j.jallcom.2018.06.331

124. Rakhadilov B. Influence of pulse plasma treatment on the phase composition and microhardness of detonation coatings based on Ti-Si-C / B. Rakhadilov, D. Buitkenov, M. Adilkhanova, Zh. Sagdoldina, Sh. Kurbanbekov // Bulletin of Karaganda University. – 2021. – Vol. 2. – P. 33–39. https://doi.org/10.31489/2021Ph2/33-39.

125. Tian L. Microstructure, Microhardness, and Wear Resistance of AlCoCrFeNiTi/Ni60 Coating by Plasma Spraying / L. Tian, Z. Feng, W. Xiong // Coatings. – 2018. – Vol. 8. – A. 112. https://doi.org/10.3390/coatings8030112

126. Jin G. Microstructure and Tribological Properties of In Situ Synthesized TiN Reinforced Ni/Ti Alloy Clad Layer Prepared by Plasma Cladding Technique / G. Jin, Y. Li, H. Cui, X. Cui, Z. Cai // Journal of Materials Engineering and Performance. – 2016. – Vol. 25. – P. 2412–2419. https://doi.org/10.1007/s11665-016-2058-8

127. Sudha C. Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304 L stainless steel / C. Sudha, P. Shankar, R. Rao, R. Thirumurugesan, M. Vijayalakshmi, R. Baldev // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 2103– 2112. https://doi.org/10.1016/j.surfcoat.2007.08.063

128. Löbel M. Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF / M. Löbel, T. Lindner, T. Mehner, L. Thomas // Coatings. – 2017. – Vol. 7. – A. 144. https://doi.org/10.3390/coatings7090144

129. Hsu W-L. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating / W-L. Hsu, H. Murakami, J-W. Yeh, A-C. Yeh, K. Shimoda // Surface and Coatings Technology. – 2017. – Vol. 316. – P. 71–74. https://doi.org/10.1016/j.surfcoat.2017.02.073

130. Chen L. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures / L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Ote, T. Königstein, Z. Tan, D. He // Surface and Coatings Technology. – 2019. – Vol. 358. – P. 215–222. https://doi.org/10.1016/j.surfcoat.2018.11.052

131. Huang C. Microstructural evolution and mechanical properties enhancement of a cold-sprayed CuZn alloy coating with friction stir processing / C. Huang, W. Li, Y. Feng, Y. Xie, M-P. Planche, H. Liao, G. Montavon // Materials Characterization. – 2017. – Vol. 125. – P. 76– 82. https://doi.org/10.1016/j.matchar.2017.01.027

132. Yin S. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying/ S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, R. Lupoi // Journal of Materials Science & Technology. – 2019. – Vol. 35. – P. 1003–1007. https://doi.org/10.1016/j.jmst.2018.12.015

133. Yang K. Cold sprayed AA2024/Al2O3 metal matrix composites improved by friction stir processing: Microstructure characterization, mechanical performance and strengthening mechanisms / K. Yang, W. Li, P. Niu, X. Yang, Y. Xu // Journal of Alloys and Compounds. – 2018. – Vol. 736. – P. 115–123. https://doi.org/10.1016/j.jallcom.2017.11.132

134. Huang C. Effect of tool rotation speed on microstructure and microhardness of friction-stir-processed cold-sprayed SiCp/Al5056 composite coating/ C. Huang, W. Li, Z. Zhang, M. Fu, M. Planche, H. Liao, G. Montavon // Journal of Thermal Spray Technology. – 2016. – Vol. 25. – P. 1357–1364. https://doi.org/10.1007/s11666-016-0441-5

135. Liao W-B. Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying / W-B. Liao, Z-X. Wu, W. Lu, M. He, T. Wang, Z. Guo, J. Huang // Intermetallics. – 2021. – Vol. 132. – A. 107138. https://doi.org/10.1016/j.intermet.2021.107138

136. Ulianitsky V. Structure and composition of Fe-Co-Ni and Fe-Co-Ni-Cu coatings obtained by detonation spraying of powder mixtures / V. Ulianitsky, D. Rybin, A. Ukhina, B. Bokhonov, D. Dudina, M. Samodurova, E. Trofimov // Materials Letters. – 2021. – Vol. 290. – A. 129498. https://doi.org/10.1016/j.matlet.2021.129498

137. Batraev I. A Feasibility Study of High-Entropy Alloy Coating Deposition by Detonation Spraying Combined with Laser Melting / I. Batraev, V. Ulianitsky, A. Sova, M. Samodurova, E. Trofimov, K. Pashkeev, A. Malikov, D. Dudina, A. Ukhina // Materials. – 2022. – Vol. 15. – A. 4532. https://doi.org/10.3390/ma15134532


Рецензия

Для цитирования:


Камбаров Е.Е., Уазырханова Г.К., Рутковска-Горчица М., Кусайнов А.Е. ОБЗОР КОНЦЕПЦИИ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ. Вестник НЯЦ РК. 2023;(1):25-39. https://doi.org/10.52676/1729-7885-2023-1-25-39

For citation:


Kambarov Y.Y., Uazyrkhanova G.K., Rutkowska-Gorczyca M., Kussainov A.Y. OVERVIEW OF THE HIGH-ENTROPY ALLOYS CONCEPT. NNC RK Bulletin. 2023;(1):25-39. https://doi.org/10.52676/1729-7885-2023-1-25-39

Просмотров: 391


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)